Preprint
Article

This version is not peer-reviewed.

Radiation Pattern Synthesis of the Coupled Almost Periodic Antenna Arrays Using Artificial Neural Network ANN Model

A peer-reviewed article of this preprint also exists.

Submitted:

04 January 2022

Posted:

06 January 2022

You are already at the latest version

Abstract
This paper proposes a radiation pattern synthesis of the almost periodic antenna arrays including mutual coupling effects (that extracted by the Floquet analysis according to our previous work), which principally has a high directivity and large bandwidth. For modeling the given structures, the moment method combined with the Generalized Equivalent Circuit (MoM-GEC) is proposed. The artificial neural network (ANN) as a powerful computational model has been successfully applied to the antenna array pattern synthesis. The results showed that the multilayer feedforward neural networks are rugged and can successfully and efficiently resolve various distinctive complex almost periodic antenna patterns (with different source amplitudes) (in particular, both periodic and randomly aperiodic structures are taken into account). However, the artificial neural network (ANN) is capable of quickly producing the synthesis results using generalization with the early stopping (ES) method. A significant time gain and memory consumption are achieved by using this given method to improve the generalization (called early stopping). To justify this work, several examples are developed and discussed.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated