Preprint
Article

This version is not peer-reviewed.

Seasonal Dynamics of Organic Carbon and Nitrogen in Biomasses of Microorganisms in Arable Mollisols Affected by Different Tillage Systems

A peer-reviewed article of this preprint also exists.

Submitted:

18 February 2022

Posted:

21 February 2022

You are already at the latest version

Abstract
Tillage has been reported to induce seasonal changes of organic carbon (Сmicro) and nitrogen (Nmicro) in biomass of microorganisms. Soil microorganisms execute such ecosystem functions as: it is an immediate sink of labile biophil elements; it is an agent of a conversion, catalysis and synthesis of humus substances; it transforms soil contaminants into non-hazardous wastes; it participates in soil aggregation and pedogenesis as a whole. However, the seasonal turnover of microorganisms on arable lands in temperate ecosystems has not been investigated on a relevant level. Hence, we aimed to study the dynamics of such soil microbial biomass patterns as: Сmicro, Nmicro, microbial index (MI = (Сmicro/CTOC)·100, %) and CO2-C emission on the background of 9 years of tillage and 22 years of abandoned (Ab) and fallow (F) usage. Our study was conducted on a long-term experimental site on a Mollisol in the northeast China. The maximum Сmicro and Nmicro content was found: at the beginning of the growing season – in 0-10-; in mid-July – in 20-40 cm layers, while the minimum – in August-October. The Сmicro content ranged from 577.79- and 381.79 mg-1 kg-1 under Ab in spring to 229.53- and 272.86 mg-1 kg-1 in autumn under CT (conventional tillage) and F in 0-10- and 10-20 cm layers, respectively. The amplitude of Nmicro content changes was several times lower comparatively to Сmicro. The smallest quartile range (IQR0.25-0.75) of such changes was under: no-till (NT) and Ab in 0-10-, NT and F – in 10-20- and CT - in 20-40 cm layers. The widest Сmicro : Nmicro ratio was found at F and CT – in 0-20- and CT and rotational tillage (Rot) – in 20-40 cm layers. MI dynamics resembled the trends of Сmicro and Nmicro and changed from 0.72  0.168- tо 2.00  0,030 %. The highest part of Сmicro in CTOC was at Ab (1.82  1.85 %) and NT (1.66  1.52 %) – in 0-10-; Ab (1.23  1.27 %) and NT (1.29  1.32 %) – in 10-20- and – Ab (1.19  1.09 %) and F (1.11  1.077 %) – in 20-40 cm layers, correspondingly. The Pearson’s correlation coefficient between Сmicro and CTOC increased from the upper 0-10- to the lower 20-40 cm layer, it was "strong" and "high" between Сmicro and CTOC. Different use of Mollisol affected the amplitude of Сmicro and Nmicro seasonal changes, but it didn’t change their trend. Our results suggest the key role of Ab and NT technologies in Сmicro accumulation in total organic carbon (TOC).
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated