Preprint
Article

This version is not peer-reviewed.

Enrichment of the Information Extracted From Hyperspectral Reflectance Images for Noninvasive Phenotyping

Submitted:

21 December 2021

Posted:

21 December 2021

You are already at the latest version

Abstract
Hyperspectral reflectance imaging is an emerging method for rapid non-invasive quantitative screening of plant traits. This method is essential for high-throughput phenotyping and hence for accelerated breeding of crop plants as well as for precision agriculture practices. However, extraction of sensible information from reflectance images is hindered by the complexity of plant optical properties, especially when they are measured in the field. We propose using reflectance indices (Plant Senescence Reflectance Index, PSRI; Anthocyanin Reflectance Index, ARI; and spectral deconvolution) previously developed for remote sensing of vegetation and point-based reflectometers to infer the spatially resolved information on plant development and biochemical composition using ripening apple fruit as the model. Specifically, the proposed approach enables capturing data on distribution of chlorophylls and primary carotenoids as well as secondary carotenoids (both linked with fruit ripening and leaf senescence during plant development) as well as the information on spatial distribution of anthocyanins (known as stress pigments) over the plant surface. We argue that the proposed approach would enrich the phenotype assessments made on the base of reflectance image analysis with valuable information on plant physiological condition, stress acclimation state, and the progression of the plant development.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated