Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica

Version 1 : Received: 2 December 2021 / Approved: 6 December 2021 / Online: 6 December 2021 (15:21:49 CET)

A peer-reviewed article of this Preprint also exists.

Amo, L.; Mrazova, A.; Saavedra, I.; Sam, K. Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology 2022, 11, 84. Amo, L.; Mrazova, A.; Saavedra, I.; Sam, K. Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology 2022, 11, 84.

Abstract

The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to Herbivore-Infested Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, have provided controversial results, both in arthropod and avian predators. In this study, we aimed to examine whether potential differences in the composition of bouquets of volatiles produced by Herbivore-infested and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and Herbivore-infested trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed more significant reaction and released several specific compounds in contrast to Herbivore-induced trees. These slight differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study does not allow us to confirm this result and points out the need to perform more robust predator studies.

Keywords

Avian olfaction; foraging; herbivore-induced plant volatiles; defence against herbivory

Subject

Biology and Life Sciences, Animal Science, Veterinary Science and Zoology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.