Preprint
Article

Versatile Cell and Animal Models for Advanced Investigation of Lead Poisoning

Altmetrics

Downloads

309

Views

434

Comments

1

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

01 October 2021

Posted:

01 October 2021

You are already at the latest version

Alerts
Abstract
The heavy metal lead (Pb) can irreversibly damage the human nervous system. To help understand Pb-induced damage, we applied a genetically encoded Förster resonance energy transfer (FRET)-based Pb biosensor Met-lead 1.44 M1 to two living systems to monitor the concentration of Pb: induced pluripotent stem cell (iPSC)-derived cardiomyocytes as a semi-tissue platform, and Drosophila melanogaster fruit flies as an in vivo animal model. Different FRET imaging modalities were used to obtain FRET signals, which represented the presence of Pb in the tested samples in different spatial dimensions. Using iPSC-derived cardiomyocytes, the relationship between beating activity (20–24 beats per minute, bpm) determined from the fluctuation of fluorescent signals and the concentrations of Pb represented by the FRET emission ratio values of Met-lead 1.44 M1 was revealed from simultaneous measurements. Pb (50 μM) affected the beating activity of cardiomyocytes, whereas two drugs that stop the entry of Pb differentially affected this beating activity: verapamil (2 μM) did not reverse the cessation of beating, whereas 2-APB (50 μM) partially restored this activity (16 bpm). The results clearly demonstrate a potential of this biosensor system as an anti-Pb drug screening application. In the Drosophila model, Pb was detected within the adult brain or larval central nervous system (Cha-gal4>UAS-Met-lead 1.44 M1) using fast epifluorescence and high-resolution two-photon 3D FRET ratio image systems. The tissue-specific expression of Pb biosensors provides an excellent opportunity to explore the possible Pb-specific populations within living organisms. We believe that this integrated Pb biosensor system can be applied to the prevention of Pb poisoning and advanced research on Pb neurotoxicology.
Keywords: 
Subject: Biology and Life Sciences  -   Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated