Preprint
Article

This version is not peer-reviewed.

Towards Facial Expression Recognition for On-farm Welfare Assessment in Pigs

A peer-reviewed article of this preprint also exists.

Submitted:

27 July 2021

Posted:

19 August 2021

You are already at the latest version

Abstract
Animal welfare is not only an ethically important consideration in good animal husbandry, but can also have a significant effect on an animal’s productivity. The aim of this paper is to show that a reduction in animal welfare, in the form of increased stress, can be identified in pigs from frontal images of the animals. We train a Convolutional Neural Network (CNN) using a leave-one-out design and show that it is able to discriminate between stressed and unstressed pigs with an accuracy of >90% in unseen animals. Grad-CAM is used to identify the animal regions used, and these support those used in manual assessments such as the Pig Grimace Scale. This innovative work paves the way for further work examining both positive and negative welfare states with a view to the development of an automated system that can be used in precision livestock farming to improve animal welfare.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated