Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Potential Of Simulating Energy Systems: The Multi Energy Systems Simulator Model

Version 1 : Received: 30 June 2021 / Approved: 6 July 2021 / Online: 6 July 2021 (12:36:01 CEST)
Version 2 : Received: 19 July 2021 / Approved: 21 July 2021 / Online: 21 July 2021 (14:50:24 CEST)

A peer-reviewed article of this Preprint also exists.

Bottecchia, L.; Lubello, P.; Zambelli, P.; Carcasci, C.; Kranzl, L. The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model. Energies 2021, 14, 5724. Bottecchia, L.; Lubello, P.; Zambelli, P.; Carcasci, C.; Kranzl, L. The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model. Energies 2021, 14, 5724.

Abstract

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open source energy system models, it has emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system that is used to reproduce and understand its behaviour under given conditions, without seeking an optimal solution. Given the lack of simulation models that are also fully open source, in this paper a new open source energy system model is presented. The developed tool, called Multi Energy Systems Simulator (MESS), is a modular, multi-node model that allows to investigate non optimal solutions by simulating the energy system. The model has been built having in mind urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be be represented as well. MESS is capable of performing analysis on systems composed by multiple energy carriers (e.g. electricity, heat, fuels). In this work, the tool’s features will be presented by a comparison between MESS itself and an optimization model, in order to analyze and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development.

Keywords

Energy System Modelling; Energy Optimization; Energy Simulation; Multi Energy Systems Simulator (MESS)

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.