Preprint
Article

This version is not peer-reviewed.

Attention-based YOLOv4 Algorithm in Non-destructive Radiographic Testing for Civic Aviation Maintenance

Submitted:

25 April 2021

Posted:

26 April 2021

You are already at the latest version

Abstract
The aim of this paper is to use deep learning tools to innovate pre-trained object detection models to improve the accuracy of non-destructive testing (NDT) of civil aviation maintenance. First, this thesis classifies object defects for NDT, such as cracks, undercut, etc. Nowadays, thesis surveys innovation deep-learning methods technology is used to improve the defect detection performance inferencing capability, increase the accuracy and efficiency of automatic identification which in enhanced the safety and reliability of aircraft fuselage in future, mark hidden cracks and solve the challenges that cannot be identified by manual inspection. Second, recent mainstream techniques the YOLOv4 neural network to the graphics card GPU core operator to speed up the recognition of defect images is being applied to the non-destructive inspection process of aircraft maintenance on A, C and D-Level, fully validating the deep learning model's powerful defect detection target capability. The attention-based YOLOv4 algorithm is improved by applying a one-stage attention mechanism to the YOLOv4, thereby improving the accuracy of the innovation model. Finally, thesis improved YOLOv4 based on an attention mechanism is proposed for object detection NDT via the deep learning method to effectively improve and shorten the inspection anomaly detection method for automatic detection sensor systems.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated