Preprint
Article

Algebraic Rules for the Percentage Composition of Oligomers in Genomes

This version is not peer-reviewed.

Submitted:

17 January 2021

Posted:

18 January 2021

Read the latest preprint version here

Abstract
The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author uses a tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets. If percentages of each of these n-plets in tested genomic DNA-texts are disposed into appropriate cells of appropriate matrices, unexpected rules of invariance of total sums of their percentages in certain tetra-groupings of n-plets are revealed. The author connects the received results about these genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world. Algebraic features of the genomic matrices of percentages of n-plets are analyzed and discussed. The received results can be used for further development of quantum biology.
Keywords: 
Subject: 
Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated