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Abstract. The article presents the author's results of studying hidden rules of 

structural organizations of long DNA sequences in eukaryotic and prokaryotic 

genomes. The results concern some rules of percentages (or probabilities) of n-plets in 

genomes. To reveal such rules, the author uses a tensor family of matrix 

representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 

triplets, and 256 tetraplets. If percentages of each of these n-plets in tested genomic 

DNA-texts are disposed into appropriate cells of appropriate matrices, unexpected 

rules of invariance of total sums of their percentages in certain tetra-groupings of n-

plets are revealed. The author connects the received results about these genomic 

percentages rules with a supposition of P. Jordan, who is  one of the creators of 

quantum mechanics and quantum biology, that life's missing laws are the rules of 

chance and probability of the quantum world. Algebraic features of the genomic 

matrices of percentages of n-plets are analyzed and discussed. The received results 

can be used for further development of quantum biology. 
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1. Introduction. 

 

The article continues publications [Petoukhov, 2020a-c] of author’s results of 

studying hidden rules of structural organizations of long DNA nucleotide sequences 

(that is, DNA-texts) in eukaryotic and prokaryotic genomes.  

One of the founders of quantum mechanics, who introduced also the term 

“quantum biology,” P. Jordan noted the main difference between living and inanimate 

objects: inanimate objects are controlled by the average random movement of their 

millions of particles, whose individual influence is negligible, while in a living 

organism selected – genetic - molecules have a dictatorial influence on the whole 

living organism. Besides this, claimed that life's missing laws were the rules of 

chance and probability of the quantum world [Jordan, 1932; McFadden, Al-Khalili, 

2018]. From the standpoint of Jordan’s statement, the study of probabilities or 

percentages of n-plets (monoplets, doublets, triplets, etc., that is, oligomers with 
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lengths n) in long DNA sequences is important for discovering hidden biological laws 

and for developing quantum biology. In his previous articles [Petoukhov, 2020а-с], 

the author described the universal hyperbolic rules of the oligomer cooperative 

organization of DNA nucleotide sequences in eukaryotic and prokariotic genomes. 

The formulated rules concerned total amounts of certain classess of n-plets. In this 

new preprint, the author focuses on searching possible rules of probabilities (or 

percentages) of n-plets in genomes  in line with the mentioned supposition of Jordan 

about existence of such rules. 

This research uses a well-known fact of binary-oppositional features of DNA 

nucleotides (adenine A, thymine T, cyrosine C, and guanine G), which allows a 

constructing a family of square tables for DNA alphabets of 4 nucleotides, 16 

doublets, 64 triplets, …, 4n n-plets.  Each of n-plets occupies its strong individual 

place in this family of tables, which form a tensor family of square matrices. Any 

DNA sequence of nucleotides (for example, CAGGTACAT...) can be represented as a 

sequence of oligomers of a fixed length n (for example, as a sequence of triplets 

CAG-GTA-CAT-...) and one can calculate the percentage content of each of the n-

plets in this special representation of the DNA sequence as a chain of n-plets. By 

placing the calculated percentage of each n-plet into the cell occupied by this n-plet in 

the appropriate square matrix, we obtain the numerical matrices of probabilities of all 

n-plets in the given DNA-text. 

Analysis of this family of probability matrices for n-plets reveals hidden 

regularities in the structural organization of the studied genomic DNA-texts. Below 

these regularities for cases n=1, 2, 3, 4 are described and discussed [Petoukhov, 

2020a-c]. 

 

2. The matrix representation of the DNA alphabets on the basis of binary- 

     oppositional traits of nucleotides. 

 

As it is known, the DNA alphabet of 4 nucleotides A, T, C, and G is endowed with a 

system of binary-opposition traits or indicators [Fimmel, Petoukhov, 2020; 

Petoukhov, 2008; Petoukhov, 2008; Petoukhov, He, 2010; Stambuk, 1999]: 

    1) two of these molecules are purines with two rings (A and G), and the other two 

are pyrimidines with one ring (C and T). In terms of these oppositional indicators,       

C = T = 1,  A = G = 0 ; 

    2) the two letters are keto molecules (T and G), and the other two - amino 

molecules (C and A). In terms of these oppositional indicators, C = A = 1, T = G = 0. 

     In the DNA alphabet of 4 nucleotides, each of the letters C, A, T, and G is 

uniquely determined by its named binary indicators. With this in mind, it is 

convenient to present sets of 4 DNA nucleotides, their 16 doublets and 64 triplets in 

the form of square tables, the columns of which are numbered with binary indicators 

“pyrimidine or purine” (C = T = 1, A = G = 0), and the rows are numbered with 

binary indicators “amino or keto ”(C = A = 1, T = G = 0). In such tables, all                

4 nucleotides, 16 doublets and 64 triplets of DNA automatically occupy their 

individual places in the strict order (Fig. 2.1). 

 
 1 0     11 10 01 00 

1 C A  11 CC CA AC AA 

0 T G 10 CT CG AT AG 

 01 TC TA GC GA 

00 TT TG GT GG 
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 111 110 101 100 011 010 001 000 

111 CCC CCA CAC CAA ACC ACA AAC AAA 

110 CCT CCG CAT CAG ACT ACG AAT AAG 

101 CTC CTA CGC CGA ATC ATA AGC AGA 

100 CTT CTG CGT CGG ATT ATG AGT AGG 

011 TCC TCA TAC TAA GCC GCA GAC GAA 

010 TCT TCG TAT TAG GCT GCG GAT GAG 

001 TTC TTA TGC TGA GTC GTA GGC GGA 

000 TTT TTG TGT TGG GTT GTG GGT GGG 

 

 
 

Fig. 2.1. The square tables of the DNA-alphabets of 4 nucleotides, 16 doublets, 64  

               triplets, and 256 tetraplets, which are constructed by the method of binary  

               numbering of their rows and columns and which are members of a tensor  

               family of matrices [C, A; T, G](n) under n = 1, 2, 3, 4 (see explanations in the  

               text).→ 

 

These four tables are not simple tables but they form a single tensor family of 

matrices: the second, the third, and the fourth tensor powers of the (2*2)-matrix          

[C, A; T, G] automatically give this (4*4)-matrix of 16 doublets, this (8*8)-matrix of 

64 triplets, and this (16*16)-matrix of 256 tetraplets (Fig. 1). Using the same method 

of binary numbering of rows and columns of square matrices of DNA alphabets of    

n-plets, one can similarly construct square tables of 1024 pentaplets, and so on. These 

new tables will also be members of the unified tensor family of symbolic matrices  

[C, A; T, G](n) for values n = 5, 6, ... 

 The tensor family of matrices [C, A; T, G](n) was first used by the author for a 

comparative analysis of the percentage of different n-plets in the DNA-texts of 

various genomes. Let us explain our analytical approach using a specific example of 

the DNA of the first human chromosome, which contains a sequence of about            

250 million nucleotides C, A, T, and G (initial data on this chromosome were taken in 

the GenBank: https://www.ncbi.nlm.nih.gov/nuccore/NC_000001.11). One can 

remind here that genomic sequences in the GenBank sites usually contain some letters 

N, indicating that there can be any nucleotide in this place 

(https://www.ncbi.nlm.nih.gov/books/NBK21136/). By this reason, the total amount 

of all nucleotides A, T, C, G, which are calculated for the sequence from the 

GenBank, is slightly less than the complete length of the DNA sequence, which is 
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indicated in the GenBank. But practically this is not essential for the resulting values 

of percentages of separate nucleotides in the analyzed genomic sequences. 

At the first step of the author's approach, percents of each of the nucleotides C, A, T, 

and G in this chromosome are calculated: %C ≈ 0.2085 , %G ≈ 0.2089,                  %A 

≈ 0.2910, %T ≈ 0.2917 (here percents are shown in fractions of one, and their values 

are rounded to the fourth decimal place). These percent values are used to be 

indicated in appropriate cells of the matrix of nucleotides [C, A; T, G] instead of 

nucleotide symbols for receiving a numeric matrix of nucleotides percents [Fig. 2]. 

Here and below, percentages are rounded to the fourth decimal place.  
 

C A  

➔ 
%C %A  

= 

0.2085 0.2910 

T G %T %G 0.2918 0.2087 

 

Fig. 2.2. The transformation of the symbolic matrix of 4 nucleotides into numeric  

               matrix of nucleotides percents in the case of human chromosome №1.  

 

One can note that %C ≈ %G and %A ≈  %T in accordance with the second 

Chargaff's rule [Albrecht-Buehler, 2006; Chargaff, 1971; Prahbu, 1993]. 

 At the second step of the described approach, the DNA-text of the analyzed 

chromosome is represented as a text of doublets (for example, the text 

TAACCCTA… is represented as TA-AC-CC-TA-…) and percents of each of 16 

doublets are calculated. Then these percents are indicated in appropriate cells of the 

(4*4)-matrix [C, A; T, G](2) shown in Fig. 2.1. Fig. 2.3 presents the resulting matrix of 

percents of 16 doublets. 

 

%CC %CA %AC %AA  

 

= 

0.05409 0.07274 0.05033 0.09504 

%CT %CG %AT %AG 0.07134 0.01031 0.07429 0.07137 

%TC %TA %GC %GA 0.06008 0.06312 0.04402 0.06008 

%TT %TG %GT %GG 0.09568 0.07286 0.05046 0.05419 

 

Fig. 2.3. The matrix of percents of the 16 doublets in the DNA-sequence of doublets  

               in the human chromosome №1. 

 

 

 At the third step of the described approach, the DNA-text of the analyzed 

chromosome is represented as a text of triplets (for example, the text 

TAACCCTAG… is represented as TAA-CCC-TAG-…) and percents of each of          

64 triplets are calculated. Then these percents are indicated in appropriate cells of the 

(8*8)-matrix [C, A; T, G](3) shown in Fig. 2.1. The resulting matrix of percents of        

64 triplets is presented in Fig. 2.4. 

 

%CCC %CCA %CAC %CAA %ACC %ACA %AAC %AAA  

 

 

 

= 

%CCT %CCG %CAT %CAG %ACT %ACG %AAT %AAG 

%CTC %CTA %CGC %CGA %ATC %ATA %AGC %AGA 

%CTT %CTG %CGT %CGG %ATT %ATG %AGT %AGG 

%TCC %TCA %TAC %TAA %GCC %GCA %GAC %GAA 

%TCT %TCG %TAT %TAG %GCT %GCG %GAT %GAG 

%TTC %TTA %TGC %TGA %GTC %GTA %GGC %GGA 

%TTT %TTG %TGT %TGG %GTT %GTG %GGT %GGG 
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0.0138 0.0188 0.0152 0.0186 0.0118 0.0198 0.0145 0.0369 

0.0185 0.0029 0.0179 0.0210 0.0162 0.0025 0.0238 0.0199 

0.0176 0.0127 0.0025 0.0023 0.0132 0.0194 0.0144 0.0224 

0.0201 0.0209 0.0026 0.0029 0.0239 0.0178 0.0161 0.0185 

0.0159 0.0196 0.0110 0.0199 0.0125 0.0146 0.0096 0.0196 

0.0223 0.0023 0.0194 0.0128 0.0144 0.0025 0.0133 0.0176 

0.0197 0.0198 0.0146 0.0195 0.0096 0.0112 0.0126 0.0160 

0.0372 0.0188 0.0199 0.0190 0.0145 0.0153 0.0119 0.0138 

 

Fig. 2.4. The matrix of percents of the 64 triplets in the DNA-sequence of triplets in   

               the human chromosome №1. 

 

At the fourth step of the described approach, the DNA-text of the analyzed 

chromosome is represented as a text of tetraplers (such as TAAC-CCTA-…) and 

percents of each of 256 tetraplets are calculated. Then these percents are indicated in 

appropriate cells of the (16*16)-matrix [C, A; T, G](4) shown in Fig. 2.1. The resulting 

matrix of percents of 256 tetraplets is presented in Fig. 2.5. 

 

 
 

Fig. 2.5. The matrix of percents of the 256 tetraplets in the DNA-sequence of  

               tetraplets in the human chromosome №1. 

 

3. Tetra-groupings of the percentage composition of n-plets. 

 

At first glance, the set of percent in the resulting matrices (Figs. 2.3-2.5) is quite 

chaotic. It has the following features regarding the percent of separate n-plets: 

• Percent of presented n-plets significantly depend on the order of letters in 

them. For example, the percent of doublets CG and GC, having the same letter 

composition, differ several times: %CG = 0.0103, and %GC = 0.0440. 

Similarly, the percent of triplets of the same letter composition CAT, CTA, 

ACT, ATC, TCA, TAC are significantly different: %CAT=0.0179, 

%CTA=0.0127, %ACT=0.0162, %ATC=0.0132, %TCA=0.0196, 

%TAC=0.0110, and so on; 

• Accordingly, the numerical percent matrices for doublets, triplets, and 

tetraplets (Figs. 2.3-2.5) are not tensor powers of the nucleotide percent matrix 

(Fig. 2.2). The percentages of doublets, triplets and tetraplets in the 
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chromosome are not equal at all to the product of the percentages of separate 

nucleotides in their composition: %C = 0.2085, %G = 0.2087, %A = 0.2910, 

%T = 0.2917.  

 But unexpectedly these values %C=0.2085, %G=0.2087, %A=0.2910, 

%T=0.2917 showed themselves in the block organization of percentages as one can 

calculate from data of percent matrices in Figs. 2.3-2.5: 

• The total sum Σ%CN of percentages of all 4 doublets CN (hereinafter, the 

symbol N denotes any of the nucleotides A, T, C, and G), which start with the 

nucleotide C, is equal to %C, that is, Σ%CN ≈ %CC + %CA +%CT + %CG ≈ 

0.0541+0.0727+0.0713+0.0103 ≈ 0.2085 ≈ %C; 

• The total sum Σ%NC of percentages of all 4 doublets NC, which have the 

nucleotide C at their second positions, is practically equal to %C, that is,  

Σ%NC ≈ %CC +%AC + %TC +%GC =  0.0541+0.0503+0.0601+0.0440 ≈ 

0.2085 ≈ %C as well; 

• The total sum Σ%CNN of percentages of all 16 triplets CNN, which have the 

nucleotide C at their first position, is practically equal to %C, that is, Σ%CNN 

≈ 0.0284 ≈ %C as well; 

• The total sum Σ%NCN of percentages of all 16 triplets NCN, which have the 

nucleotide C at their second position, is practically equal to %C, that is, 

Σ%NCN ≈ 0.0285 ≈ %C as well; 

• The total sum Σ%NNC of percentages of all 16 triplets NNC, which have the 

nucleotide C at their third position, is practically equal to %C, that is, Σ%NNC 

≈ 0.0285 ≈ %C as well; 

• The total sum Σ%CNNN of percentages of all 64 tetraplets CNNN, which have 

the nucleotide C at their first position, is practically equal to %C, that is, 

Σ%CNNN ≈ 0.0285 ≈ %C as well; 

• The total sum Σ%NCNN of percentages of all 64 tetraplets NCNN, which have 

the nucleotide C at their second position, is practically equal to %C, that is, 

Σ%NCNN ≈ 0.0285 ≈ %C as well; 

• The total sum Σ%NNCN of percentages of all 64 tetraplets NNCN, which have 

the nucleotide C at their third position, is practically equal to %C, that is, 

Σ%NNCN ≈ 0.0285 ≈ %C as well; 

• The total sum Σ%NNNC of percentages of all 64 tetraplets NNNC, which have 

the nucleotide C at their fourth position, is practically equal to %C, that is, 

Σ%NNCN ≈ 0.0285 ≈ %C as well. 

 Similar equalities turn out to be valid also for the total sums Σ  of the 

considered n-plets with nucleotides A, T, G at the analogical positions, as shown in 

Fig. 3.1.  

 

%C  ≈  0.2085 %G ≈ 0.2087 %A ≈ 0.2910 %T ≈ 0.2918 

Σ%CN  ≈  0.2085 Σ%GN ≈ 0.2088 Σ%AN ≈ 0.2910 Σ%TN ≈ 0.2917 

Σ%NC ≈ 0.2085 Σ%NG ≈ 0.2087 Σ%NA ≈ 0.2910 Σ%NT ≈ 0.2918 

Σ%CNN ≈ 0.2084 Σ%GNN ≈ 0.2088 Σ%ANN ≈ 0.2910 Σ%TNN ≈ 0.2917 

Σ%NCN ≈ 0.2085 Σ%NGN ≈ 0.2088 Σ%NAN ≈ 0.2910 Σ%NTN ≈ 0.2917 

Σ%NNC ≈ 0.2085 Σ%NNG ≈ 0.2087 Σ%NNA ≈ 0.2910 Σ%NNT ≈ 0.2918 

Σ%CNNN ≈ 0.2085 Σ%GNNN ≈ 0.2088 Σ%ANNN ≈ 0.2910 Σ%TNNN ≈ 0.2917 

Σ%NCNN ≈ 0.2085 Σ%NGNN ≈ 0.2087 Σ%NANN ≈ 0.2910 Σ%NTNN ≈ 0.2918 

Σ%NNCN ≈ 0.2085 Σ%NNGN ≈ 0.2088 Σ%NNAN ≈ 0.2910 Σ%NNTN ≈ 0.2918 

Σ%NNNC ≈ 0.2085 Σ%NNNG ≈ 0.2087 Σ%NNNA ≈ 0.2910 Σ%NNNT ≈ 0.2918 
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Fig. 3.1. Percentages of nucleotides C, G, A, T, and the sum Σ of percent of n-plets  

              with these nucleotides at the certain positions for the case of DNA of the first  

               human chromosome. The symbol N denotes any of the nucleotides.  

 

 

Briefly speaking, the following relations (1) hold true - with high level of 

accuracy - regarding percentages of the nucleotides C, G, A, and T, and the 

considered n-plets in the human chromosome №1: 

 

          %C ≈ %CN ≈ Σ%NC ≈ Σ%CNN ≈ Σ%NCN ≈ Σ%NNC ≈  

    Σ%CNNN ≈ Σ%NCNN ≈ Σ%NNCN ≈ Σ%NNNC; 

          %G ≈ Σ%GN ≈ Σ%NG ≈ Σ%GNN ≈ Σ%NGN ≈ Σ%NNG ≈  

    Σ%GNNN ≈ Σ%NGNN ≈ Σ%NNGN ≈ Σ%NNNG; 

          %A ≈ Σ%AN ≈ Σ%NA ≈ Σ%ANN ≈ Σ%NAN ≈ Σ%NNA ≈  

    Σ%ANNN ≈ Σ%NANN ≈ Σ%NNAN ≈ Σ%NNNA; 

         %T ≈ Σ%TN ≈ Σ%NT ≈ Σ%TNN ≈ Σ%NTN ≈ Σ%NNT ≈  

    Σ%TNNN ≈ Σ%NTNN ≈ Σ%NNTN ≈ Σ%NNNT                                               (1) 

 

These equalities (1) can also be written in the form (2) of the equality of           

4-dimensional vectors of genomic percentages, the coordinates of which are the 

percentages of individual nucleotides or the considered n-plets with nucleotides at 

certain positions: 

  

[%A, %T, %C, %G] ≈ [Σ%AN, Σ%TN, Σ%CN, Σ%GN] ≈  

[Σ%NA, Σ%NT, Σ%NC, Σ%NG] ≈  

[Σ%ANN, Σ%TNN, Σ%CNN, Σ%GNN] ≈  

[Σ%NAN, Σ%NTN, Σ%NCN, Σ%NGN] ≈  

[Σ%ANN, Σ%TNN, Σ%CNN, Σ%GNN] ≈  

[Σ%ANNN, Σ%TNNN, Σ%CNNN, Σ%GNNN] ≈  

[Σ%NANN, Σ%NTNN, Σ%NCNN, Σ%NGNN] ≈  

[Σ%NNAN, Σ%NNTN, Σ%NNCN, Σ%NNGN] ≈ 

[Σ%NNNA, Σ%NNNT, Σ%NNNC, Σ%NNNG].                                                     (2) 

 

Knowing the percentages of nucleotides %A, %T, %C, and %G, it is possible 

to predict with high accuracy the sums of percentages of n-plets of the noted classes. 

The ability of such predictions on the basis of equalities (1) or (2) holds not only for 

the considered human chromosome №1 but also for many eukaryotic and prokaryotic 

genomes, which were analyzed by the author till now. One should note that 

percentages of nucleotides %A, %T, %C, and %G can be essentially different in 

various genomes. (Appendix I contains one of many possible examples of percent 

matrices related to the genome of bacteria Bradyrhizobium japonicum where            

%A ≈ 0.1819, %T ≈ 0.1815, %C ≈ 0.3184, and %G ≈ 0.3182 in contrast to the 

considered case of the human chromosome #1). This indicates a universal cooperative 

organization of n-plets in genomic DNA-texts, which is reflected in very special 

block-mosaic structures of the percent matrices of n-plets (Fig. 2.3-2.5).  

The four columns in Fig. 3.1 show that in all considered cases of percentages 

of four kinds of nucleotides and percent sums of n-plets, which have these nucleotides 

as their positional attributes, there exist regular tetra-subsets of percentages (or 

percentage tetra-groupings).  
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It can be noted that the sum of the percentages (that is, the probabilities) of n-

plets in each of these four subsets can be interpreted as the square of the length of a 

vector whose components are equal to the square roots of the probabilities of the 

corresponding n-plets (these square roots can be considered as amplitudes of the 

probabilities of n-plets). For example, the sum %CC+%CG+%CA+%CT is the square 

of the length of the 4-dimensional vector VCN = [√%CC, √%CG, √%CA, √%CT]. 

From this point of view, equalities (2) mean the constancy of the length of the             

corresponding 2n-dimensional vectors, whose coordinates are the amplitudes of the 

probabilities of the corresponding n-plets. This metric approach allows for developing 

new methods of comparative vector analysis in genetics, which are now being studied 

in our laboratory. 

 

4. DNA epi-chains and the tetra-grouping matrices of percentages of n-plets. 

 

This Section presents some results of the analogical study of percentages of n-plets in 

special subsequences of long nucleotide sequences in single-stranded DNA. These 

subsequences are termed «DNA epi-chains» [Petoukhov, 2019, 2020a-c]. The author's 

initial results testify that the above described equalities (1) and (2) of total sums of 

percentages of n-plets hold for these epi-chains as well. 

By definition, in a nucleotide sequence N1 of any DNA strand N1 (Fig. 4.1a) 

with sequentially numbered nucleotides 1, 2, 3, 4, ... (Fig. 4.1a), epi-chains of 

different orders k are such subsequences that contain only those nucleotides, whose 

numeration differ from each other by natural number k = 1, 2, 3, 4, … . For example, 

in any single-stranded DNA, one can consider its epi-chain of the second order N2, in 

which its nucleotide sequence numbers differ by k = 2: an epi-chain N2 contains 

nucleotides with numerations 1, 3, 5, … (Fig. 4.1b). By analogy, an epi-chain of the 

third order N3 is connected with k =3 and contains a subsequence of nucleotides with 

numerations 1, 4, 7, 10, ... (Fig. 4.1d). 

 

   

 

Fig. 4.1. Schematic representations of a single-stranded DNA and its initial epi-chains  

               of numerated nucleotides, denoted by black circles. a, a sequence N1 of  

               numerated nucleotides of the DNA strand. b, an epi-chain of the second  

               order N2 having nucleotides with numbers 1-3-5-7-… . c, an epi-chain of the  

               third order N3 nucleotides numbers 1-4-7-10-… .  
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Each genomic DNA epi-chain of k-th order (if k = 2, 3, 4, ....) contains k times 

fewer nucleotides than the DNA strand and has its own arrangements of nucleobases 

A, T, C, and G. But unexpectedly, despite on these text differences, matrices of 

percentages of n-plets in these very new nucleotide sequences contain analogical 

tetra-groupings with the same equalities (1) and (2) for total sums of corresponding  

n-plets (at this stage of the research, the author studied the percent matrices of        

epi-chains only in cases of epi-chains with relatively small orders k). 

To illustrate this result, let's consider the percent matrices for the second, third 

and fourth order epi-chains (k = 2b 3b 4) in the DNA of the first human chromosome 

(Fig. 4.2). 

 

%CC %CA %AC %AA  

 
≈ 

0.05409 0.07274 0.05033 0.09504 

%CT %CG %AT %AG 0.07134 0.01031 0.07429 0.07137 

%TC %TA %GC %GA 0.06008 0.06312 0.04402 0.06008 

%TT %TG %GT %GG 0.09568 0.07286 0.05046 0.05419 

 

Epi-chain of the 2nd order 

 

Epi-chain of the 3rd order 

 

Epi-chain of the 4th order 

 
 

Fig. 4.2. Matrices of percentages of 16 doublets in the single-stranded DNA of the  

             human chromosome #1. Upper row: percentages matrices of the DNA (k = 1).  

             Bottom row: percent matrices for the DNA epi-chains of the second, third,  

             and fourth orders (k = 2, 3, 4). 

 

One can see from data in Fig. 4.2 that different percentages matrices contain 

essential different percentages in corresponding separate cells. For example, %CG = 

0.0103 in the complete single-stranded DNA; %CG = 0.0478 in the epi-chain of the 

2nd order; %CG = 0.0464 in the epi-chain of the 3rd order; %CG = 0.0475 in the         

epi-chain of the 4th order. But in each of these four percentages matrices the equalities 

(2) are realized with high level of accuracy: 

 

         [%A, %T, %C, %G] ≈ [Σ%AN, Σ%TN, Σ%CN, Σ%GN] ≈  

         [Σ%NA, Σ%NT, Σ%NC, Σ%NG] ≈ [0.2910, 0.2918, 0.2085, 0.2087]                (3) 

 

It illustrates that the total sums of the percentages in each of the tetra-

groupings of n-plets practically do not depend on the percent values of individual n-

plets in these sums. This resembles the phenomenon of perceiving a musical melody, 

which can be reproduced in different frequency ranges of octaves, that is, under 

significantly changing the frequency of the sound of each of its note elements, but 

despite these changes, the melody remains generally recognizable. Many such 

phenomena of perception, in which there is relative independence of the integral form 

from its constituent individual components, are studied in Gestalt psychology. The 

described universal regularities in the preservation of total percentages in tetra-

groupings of n-plets relatively regardless of the percentage of individual n-plets in 

genomic DNA allow the author to develop gestalt genetics. Gestalt genetics is 
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interrelated in some degree with Gestalt psychology, which studies the corresponding 

genetically inherited properties of our brain regarding the perception of the 

environment. 

 

 

5. Percentages matrices of n-plets and algebras of hyperbolic numbers 

 

This section shows that each of the vectors of percentages sums of n-plets in 

the equalities (2) corresponds to such mosaical matrix, which is connected with well-

known algebras of 2n-dimensional hyperbolic numbers (hyperbolic numbers are 

termed also as double numbers, Lorentz numbers, split-complex numbers and perplex 

numbers). Consequently the arrangements of the described tetra-groupings of n-plets 

inside these (2n*2n)-matrices of percentages obey special algebraic rules. It is 

additionally interesting since, as it is known, structures of some genetically inherited 

biological phenomena are related to 2n-dimensional hyperbolic numbers [Petoukhov, 

2020b]. 2-dimensional hyperbolic numbers form algebra over the field of real 

numbers [Harkin, Harkin, 2004; Kantor, Solodovnikov, 1989].  

 To demonstrate these connections, we will take initially from equalities (2) the 

vector of percentage sums of 16 doublets [Σ%AN, Σ%TN, Σ%CN, Σ%GN]; its 

coordinates correspond to summary percentages of tetra-groupings of doublets, which 

start with one of nucleotides C, G, A, or T. Let us denone matrix cells, which are 

occupied by 8 doublets CN and GN, by number +1, and matrix cells, which are 

occupied by 8 doublets AN and AT, by number -1. (These two groupings of doublets 

occupy appropriate quadrants along diagonals of the matrix as it it shown in Figs. 2.1 

and 2.3). Fig. 5.1 gives a result of these denotations, which transform a symbolic 

matrix of doublets into numeric matrix M2 with entries +1 and -1. 

 

%CC %CA %AC %AA  

 

 ➔ M21 = 

+1 +1 -1 -1 

%CT %CG %AT %AG +1 +1 -1 -1 

%TC %TA %GC %GA -1 -1 +1 +1 

%TT %TG %GT %GG -1 -1 +1 +1 

 

Fig. 5.1. Transformation of the symbolic (4*4)-matrix of 16 doublets into the numeric  

               matrix M21 which shows the arrangements of cells, occupied by  

               doublets CN and GN (black cells) and also by AN and TN (white cells). 

 

 

 The recevied matrix can be decomposed into sum of four sparse matrices e0, 

e1, e2, e3: M21 = e0 + e1 + e2 + e3 (Fig. 5.2). The set of sparse matrices turns out to be 

closed under the multiplication operation: the product of any two matrices of this set 

by each other gives a matrix of the same set. This defines the multiplication table of 

these matrices (Fig. 5.2), which is known as the multiplication table of the basis units 

of algebra of 4-dimensional hyperbolic numbers (or algebra of 4-dimensional 

hyperbolic matrions [Petoukhov, 2008; Petoukhov, He, 2010]). It should be noted that 

the decomposition of the matrix M21 was done on the basis of the known method of 

the dyadic-shift decompositions [Petoukhov, 2008;  Petoukhov, He, 2010], which is 

used in this section below for other matrices as well. 
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M21 = e0+e1 

     +e2+e3 = 

1 0 0 0 

0 1 1 1 

0 0 1 0 

0 0 0 1 

 

 

+ 

0 1 0 0 

1 0 0 0 

0 0 0 1 

0 0 1 0 

 

 

+ 

0 0 -1 0 

0 0 0 -1 

-1 0 0 0 

0 -1 0 0 

 

 

+ 

0 0 0 -1 

0 0 -1 0 

0 -1 0 0 

-1 0 0 0 
 

* e0 e1 e2 e3 

e0 e0 e1 e2 e3 

e1 e1 e0 e3 e2 

e2 e2 e3 e0 e1 

e3 e3 e2 e1 e0 
 

 

Fig. 5.2. The decomposition of the matrix M21 = e0+e1+e2 +e3 from Fig. 5.1 and the  

               multiplication table (at right) of these sparse matrices e0, e1, e2, and e3. The  

               bold box in the multiplication table refers the subalgebra of 2-dimensional  

               hyperbolic numbers.   

 

 By analogy, one can take from the equalities (2) another vector               

[Σ%NA, Σ%NT, Σ%NC, Σ%NG]; its coordinates correspond to summary percentages 

of those tetra-groupings of 16 doublets, which have nucleotides C, G, A, and T at 

their second positions and occupy a new set of cells in the percentages matrix of 

doublets. Let us denote matrix cells, which are occupied by 8 doublets NC and NG, 

by number +1, and cells, which are occupied by of 8 doublets NA and NT, by number 

-1. Fig. 5.3 shows a numeric matrix M22, which appears in the result and which has a 

mosaic resembling a chessboard. 

 

%CC %CA %AC %AA  

 

 ➔ M22 = 

+1 -1 +1 -1 

%CT %CG %AT %AG -1 +1 -1 +1 

%TC %TA %GC %GA +1 -1 +1 -1 

%TT %TG %GT %GG -1 +1 -1 +1 

 

Fig. 5.3. Transformation of the symbolic matrix of doublets into the numeric matrix  

               M22, which shows the arrangements of cells, occupied by  

               doublets NC and NG (black cells) and also by NA and NT (white cells).  

 

The recevied matrix can be decomposed into sum of four new sparse matrices 

e0, e1, e2, e3: M22 = e0 + e1 + e2 + e3 (Fig. 5.4). The set of these sparse matrices turns 

out to be closed under the multiplication as well: the product of any two matrices of 

this set by each other gives a matrix of the same set. This defines the multiplication 

table of these matrices (Fig. 5.4), which coincides with the multiplication table shown 

in Fig. 5.2. It means that both matrices M12 and M22 are different matrix 

representations of  4-dimensional hyperbolic number with unit coordinates. 

 
 

 

 

M22 = e0+e1 

       +e2+e3 = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1  

 

 

+ 

0 -1 0 0 

-1 0 0 0 

0 0 0 -1 

0 0 -1 0 

 

 

+ 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

 

 

+ 

0 0 0 -1 

0 0 -1 0 

0 -1 0 0 

-1 0 0 0 
 

 e0 e1 e2 e3 

e0 e0 e1 e2 e3 

e1 e1 e0 e3 e2 

e2 e2 e3 e0 e1 

e3 e3 e2 e1 e0 
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Fig. 5.4. The decomposition of the matrix M22 = e0+e1+e2 +e3 from Fig. 5.3 and the  

               multiplication table (at right) of these sparse matrices e0, e1, e2, and e3. The  

               bold box in the multiplication table refers the subalgebra of 2-dimensional  

               hyperbolic numbers.   

 

 

 By analogy, one can take from the equalities (2) another vector [Σ%ANN, 

Σ%TNN, Σ%CNN, Σ%GNN]; its coordinates correspond to summary percentages of 

those tetra-groupings of 64 triplets, which start with nucleotides C, G, A, and T. Let 

us denote marix cells, which are occupied by 32 triplets CNN and GNN, by number 

+1, and matrix cells, which are occupied by 32 triplets ANN and TNN, by number -1. 

These two groupings of triplets ocupy appropriate quadrants of the matrix as it it 

shown in Figs. 2.1 and 2.4. Fig. 5.5 shows a result of these denotations, which lead to 

a numeric matrix M31 with entries +1 and -1. 

 

%CCC %CCA %CAC %CAA %ACC %ACA %AAC %AAA  

 

 

 
➔ 

%CCT %CCG %CAT %CAG %ACT %ACG %AAT %AAG 

%CTC %CTA %CGC %CGA %ATC %ATA %AGC %AGA 

%CTT %CTG %CGT %CGG %ATT %ATG %AGT %AGG 

%TCC %TCA %TAC %TAA %GCC %GCA %GAC %GAA 

%TCT %TCG %TAT %TAG %GCT %GCG %GAT %GAG 

%TTC %TTA %TGC %TGA %GTC %GTA %GGC %GGA 

%TTT %TTG %TGT %TGG %GTT %GTG %GGT %GGG 

 

 

 

 

M31 = 

+1 +1 +1 +1 -1 -1 -1 -1 

+1 +1 +1 +1 -1 -1 -1 -1 

+1 +1 +1 +1 -1 -1 -1 -1 

+1 +1 +1 +1 -1 -1 -1 -1 

-1 -1 -1 -1 +1 +1 +1 +1 

-1 -1 -1 -1 +1 +1 +1 +1 

-1 -1 -1 -1 +1 +1 +1 +1 

-1 -1 -1 -1 +1 +1 +1 +1 

 

Fig. 5.5. Transformation of the symbolic (8*8)-matrix of 64 triplets into the numeric  

               matrix M31, which shows the arrangements of cells, occupied by  

               triplets CNN and GNN (black cells) and also by triplets ANN and TNN  

               (white cells).  

 

 

The recevied matrix M31 can be decomposed by the method of the dyadic-shift 

decompositions into sum of 8 sparse matrices: M31 = e0 + e1 + e2 + e3 + e4 + e5 + e6 + 

e7 (Fig. 5.6). The set of these 8 sparse matrices turns out to be closed under the 

multiplication operation and defines the multiplication table of these matrices (Fig. 

5.6), which is known as the multiplication table of the basis units of algebra of          

8-dimensional hyperbolic numbers (or 8-dimensional hyperbolic matrions 

[Petoukhov, 2008; Petoukhov, He, 2010]). 
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M31 = e0+e1+ 

e2+e3+e4+e5+ 

e6+e7 = 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

 

 

 

+ 

 

 

 

 

 

 

 

 

+ 

0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

 

 

 

+ 

 

 

 

 

 

 

 

 

+ 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

 

 

 

+ 

 

 

 

 

 

 

 

 

+ 

   

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 

 0  0 0 0 -1 0 0  0  

 0  0 0 0  0 -1 0 0 

 0  0 0 0  0 0 -1 0 

 0  0 0 0  0 0 0 -1 

-1  0 0 0  0 0 0  0 

 0 -1 0 0  0 0 0  0 

 0  0 -1 0 0 0 0  0 

 0  0 0 -1 0 0 0  0 

0 0 0  0 0 -1 0 0 

0 0 0  0 -1 0 0 0 

0 0 0  0  0 0 0 -1 

0 0 0  0  0 0 -1 0 

0 -1 0 0  0 0  0 0 

-1 0 0 0  0 0  0 0 

 0 0 0 -1 0 0  0 0 

 0 0 -1 0 0 0  0 0 

 

0 0 0 0 0 0 -1  0 

0 0 0 0 0 0 0 -1 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 -1 0 0 0 0 0 

0 0 0 -1 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

 

 

 

+ 

0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 -1 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 -1 0 0 0 

0 0 0 -1 0 0 0 0 

0 0 -1 0 0 0 0 0 

0 -1 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

 

 

* e0 e1 e2 e3 e4 e5 e6 e7 

e0 e0 e1 e2 e3 e4 e5 e6 e7 

e1 e1 e0 e3 e2 e5 e4 e7 e6 

e2 e2 e3 e0 e1 e6 e7 e4 e5 

e3 e3 e2 e1 e0 e7 e6 e5 e4 

e4 e4 e5 e6 e7 e0 e1 e2 e3 

e5 e5 e4 e7 e6 e1 e0 e3 e2 

e6 e6 e7 e4 e5 e2 e3 e0 e1 

e7 e7 e6 e5 e4 e3 e2 e1 e0 

 

Fig. 5.6. The decomposition of the (8*8)-matrix M32 of 64 triplets from Fig. 5.5 and  

               the multiplication table (at bottom) of the sparse matrices e0, e1, …, e7,  

               which are shown above. The bold boxes in the multiplication table refer the  

               subalgebras of 2-dimensional and 4-dimensional hyperbolic numbers.   

 

By analogy, one can take from the equalities (2) another vector [Σ%NAN, 

Σ%NTN, Σ%NCN, Σ%NGN]; its coordinates correspond to summary percentages of 

those tetra-groupings of 64 triplets, which have nucleotides C, G, A, and T at their 
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second positions and occupy a new set of cells in the percentages matrix of triplets. 

Let us denote marix cells, which are occupied by 32 triplets NCN and NGN, by 

number +1, and matrix cells, which are occupied by 32 triplets NAN and NTN, by 

number -1. Fig. 5.7 shows a result of such denotations, which lead to a numeric 

matrix M31 with entries +1 and -1. 

 

 

 

 

M32 = 

+1 +1 -1 -1 +1 +1 -1 -1 

+1 +1 -1 -1 +1 +1 -1 -1 

-1 -1 +1 +1 -1 -1 +1 +1 

-1 -1 +1 +1 -1 -1 +1 +1 

+1 +1 -1 -1 +1 +1 -1 -1 

+1 +1 -1 -1 +1 +1 -1 -1 

-1 -1 +1 +1 -1 -1 +1 +1 

-1 -1 +1 +1 -1 -1 +1 +1 

 

Fig. 5.7. Transformation of the symbolic (8*8)-matrix of 64 triplets (Figs. 2.1 and  

               2.4) into the numeric matrix M32, which shows the arrangements of cells,  

               occupied by 32 triplets NCN and NGN (black cells) and also by 32 triplets  

               NAN and NTN (white cells).  

 

 The received numeric matrix M32 can be also decomposed by the same 

method of the dyadic-shift decompositions into sum of new 8 sparse matrices (as it 

was made above for matrices M21, M22, and M31); the set of these 8 sparse matrices 

turns out to be closed in relation to the multiplication again and defines the same 

multiplication table of these matrices as in the case of the matrix M31 (see Fig. 5.6, at 

bottom). 

 One can take from the equalities (2) also another vector [Σ%NNA, 

Σ%NNT, Σ%NNC, Σ%NNG]; its coordinates correspond to summary percentages of 

those tetra-groupings of 64 triplets, which have nucleotides C, G, A, and T at their 

third positions and occupy a new set of cells in the percentages matrix of triplets. Let 

us denote marix cells, which are occupied by 32 triplets NNC and NNG, by number 

+1, and matrix cells, which are occupied by 32 triplets NNA and NNT, by number -1. 

Fig. 5.8 shows a result of such denotations, which lead to a numeric matrix M33 with 

entries +1 and -1. 

 

 

 

 

                             M33 = 

+1 -1 +1 -1 +1 -1 +1 -1 

-1 +1 -1 +1 -1 +1 -1 +1 

+1 -1 +1 -1 +1 -1 +1 -1 

-1 +1 -1 +1 -1 +1 -1 +1 

+1 -1 +1 -1 +1 -1 +1 -1 

-1 +1 -1 +1 -1 +1 -1 +1 

+1 -1 +1 -1 +1 -1 +1 -1 

-1 +1 -1 +1 -1 +1 -1 +1 

 

Fig. 5.8. Transformation of the symbolic (8*8)-matrix of 64 triplets (from Figs. 2.1  

              and 2.4) into the numeric matrix M33, which shows the arrangements of cells,  

              occupied by 32 triplets NNC and NNG (black cells) and also by 32 triplets  

              NNA and NNT (white cells).  
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The received numeric matrix M33 can be also decomposed by the same 

method of the dyadic-shift decompositions into sum of new 8 sparse matrices (as it 

was made above for matrices M21, M22, M31, and M32); the set of these 8 sparse 

matrices turns out to be closed in relation to the multiplication again and defines the 

same multiplication table of these matrices as in the case of the matrix M31 (see Fig. 

5.6, at bottom). 

The same analysis with similar results can be done for tetra-groupings of 

matrix cells regarding 4-dimensional vectors of percentages sums of tetraplets from 

the equalities (2). 

 

Some concludinhg remarks. 

 

The presented results of the study of the regularities in the distribution of the 

percentages of n-plets in long DNA-texts of various organisms are consistent with 

Jordan's claiming that life's missing laws are the rules of chance and probability of the 

quantum world [Jordan, 1932; McFadden, Al-Khalili, 2018]. The described author's 

results show existence of previously unknown genetic regularities. These results were 

obtained on the basis of new methods of analysis and modeling of DNA-texts, which 

are connected with mathematical formalisms of quantum mechanics and quantum 

informatics, algebras of multi-dimensional hypercomplex numbers, metric analysis 

anf the theory on noise-immune coding of informatics.   

Considering the views of Jordan and Schrödinger about the dictatorial role of 

the structured informatics of genetic molecules for the whole organism [McFadden, 

Al-Khalili, 2018], it is natural to think that the structural features of DNA informatics 

leave their mark on all genetically inherited biological systems and phenomena. This 

is consistent with the fact that all physiological systems must be structurally aligned 

with genetic coding in order to be transmitted in genetically encoded form to 

offspring. This is also consistent with the point of view that the main task of living 

organisms is to transfer genetic information along the chain of generations. 

 The received results can be used, in particular, for developing our knowledge 

about principles of brain activities and about a relation between ‘living’ and non-

living matter. These themes are actively discussed in scientific community. For 

example, concerning a relation between ‘living’ and non-living matter, W. Pauli 

stated that the mental and the material domain are governed by common ordering 

principles, and can be understood as “complementary aspects of the same reality” 

[Pauli, 1994; Geesink, Meijer, 2016].  

Regarding the metric features of biological phenomena, it can be noted that 

thoughts about metric spaces are spread by a number of authors even to mathematics 

as a high form of intellectual activity. For example, the book [Hofstadter, 1980, page 

612] notes that a mathematician feels that in mathematics there is a certain metric that 

unites ideas - that all mathematics is a network of results that are interconnected by a 

huge number of connections; had we been able to introduce this highly developed 

sense of mathematical closeness - the mental metric of a mathematician - into the 

program, we could create a primitive artificial mathematician. 

In accordance with these statements of Hofstadter, the book [Nalimov, 2015, 

p. 115] emphasizes: "In other words, artificial intelligence could be brought closer to 

mathematical thinking, if it were possible to realize the metric properties of the 

human thinking space ... We are ready to go further and say that consciousness itself 

is geometrically structured: existentially, a person is geometric ...  In our minds, when 
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constructing texts through which we perceive the World, something very similar to 

what happens in morphogenesis happens. We are ready to see in the depths of 

consciousness the same geometric images that are revealed in morphogenesis". 

In general, the presented results of the author's studies of the structural rules of 

genetic informatics give pieces of evidences in favor of effectivity of a model 

approach to living organisms as quantum-informational algebraic-harmonic essences 

on modular principles. 

 

 

Appendix I. An example of n-plets percentages in one of the bacterial genomes. 

 

The Appendix presents data about percentages of n-plets in the rhizobacteria 

Bradyrhizobium japonicum strain E109, complete genome, 9224208 bp (initial data 

were taken from https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank; 

the length of this sequence is more than 20 times shorter than the length of the 

sequence of the first human chromosome;). Figs. A1-A5 show corresponding matrices 

of percentages of 4 nucleotides, 16 doublets, 64 triplets and 256 tetraplets for this 

genome. These percentages matrices for the bacteria and the percentages matrices 

(Figs. 2.2-2.5) for human chromosome #1 have similar tetra-groupings properties, 

which are expressed by the equalities (1) and (2). 

 

 

C A  
➔ 

%C %A  

= 

0.3184 0.1819 

T G %T %G 0.1815 0.3182 

 

Fig. A.1. The transformation of the symbolic matrix of 4 nucleotides into numeric  

               matrix of nucleotides percents in the case of the genomic DNA of the  

               Bradyrhizobium japonicum strain E109. 

 

 

%CC %CA %AC %AA  

 

= 

0.0781 0.0587 0.0467 0.0367 

%CT %CG %AT %AG 0.0515 0.1302 0.0469 0.0517 

%TC %TA %GC %GA 0.0720 0.0145 0.1216 0.0719 

%TT %TG %GT %GG 0.0365 0.0584 0.0468 0.0779 

 

Fig. A.2. The matrix of percents of the 16 doublets in the genomic DNA-sequence of  

          doublets in the Bradyrhizobium japonicum strain E109 (compare with Fig. 2.3). 

 

 

 

%CCC %CCA %CAC %CAA %ACC %ACA %AAC %AAA  

 

 

 

= 

%CCT %CCG %CAT %CAG %ACT %ACG %AAT %AAG 

%CTC %CTA %CGC %CGA %ATC %ATA %AGC %AGA 

%CTT %CTG %CGT %CGG %ATT %ATG %AGT %AGG 

%TCC %TCA %TAC %TAA %GCC %GCA %GAC %GAA 

%TCT %TCG %TAT %TAG %GCT %GCG %GAT %GAG 

%TTC %TTA %TGC %TGA %GTC %GTA %GGC %GGA 

%TTT %TTG %TGT %TGG %GTT %GTG %GGT %GGG 
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0.0131 0.0154 0.0136 0.0129 0.0145 0.0083 0.0097 0.0068 

0.0148 0.0344 0.0145 0.0185 0.0053 0.0182 0.0075 0.0126 

0.0174 0.0040 0.0446 0.0328 0.0205 0.0043 0.0205 0.0106 

0.0126 0.0183 0.0185 0.0343 0.0075 0.0144 0.0052 0.0146 

0.0149 0.0133 0.0044 0.0021 0.0353 0.0210 0.0195 0.0153 

0.0105 0.0323 0.0043 0.0039 0.0210 0.0443 0.0209 0.0171 

0.0151 0.0020 0.0206 0.0133 0.0195 0.0044 0.0356 0.0150 

0.0069 0.0125 0.0082 0.0153 0.0098 0.0133 0.0148 0.0133 

 

Fig. A.3. The matrix of percents of the 64 triplets in the genomic DNA-sequence of  

             triplets in the Bradyrhizobium japonicum strain E109 (compare with Fig. 2.4). 

 

 
 

Fig. A.4. The matrix of percents of the 256 tetraplets in the genomic DNA-sequence  

               of tetraplets in the Bradyrhizobium japonicum strain E109 (compare with  

               Fig. 2.5). 
 

%C  ≈  0.3184 %G ≈ 0.3182 %A ≈ 0.1819 %T ≈ 0.1815 

Σ%CN  ≈  0.3185 Σ%GN ≈ 0.3182 Σ%AN ≈ 0.1820 Σ%TN ≈ 0.1814 

Σ%NC ≈ 0.3183 Σ%NG ≈ 0.3182 Σ%NA ≈ 0.1818 Σ%NT ≈ 0.1816 

Σ%CNN ≈ 0.3197 Σ%GNN ≈ 0.3201 Σ%ANN ≈ 0.1806 Σ%TNN ≈ 0.1797 

Σ%NCN ≈ 0.3166 Σ%NGN ≈ 0.3173 Σ%NAN ≈ 0.1836 Σ%NTN ≈ 0.1825 

Σ%NNC ≈ 0.3189 Σ%NNG ≈ 0.3173 Σ%NNA ≈ 0.1815 Σ%NNT ≈ 0.1824 

Σ%CNNN ≈ 0.3184 Σ%GNNN ≈ 0.3183 Σ%ANNN ≈ 0.1816 Σ%TNNN ≈ 0.1817 

Σ%NCNN ≈ 0.3184 Σ%NGNN ≈ 0.3185 Σ%NANN ≈ 0.1816 Σ%NTNN ≈ 0.1815 

Σ%NNCN ≈ 0.3185 Σ%NNGN ≈ 0.3181 Σ%NNAN ≈ 0.1823 Σ%NNTN ≈ 0.1811 

Σ%NNNC ≈ 0.3182 Σ%NNNG ≈ 0.3180 Σ%NNNA ≈ 0.1820 Σ%NNNT ≈ 0.1818 

 

Fig. A.5. Percentages of nucleotides C, G, A, T, and the sum Σ of percent of n-plets  

               with these nucleotides at the attributive positions for the case of the genomic  

        DNA-text  of the the Bradyrhizobium japonicum strain E109 (compare with  

               Fig. 3.1). 

 

 

Acknowledgments 

 

Some results of this paper have been possible due to a long-term cooperation between 

Russian and Hungarian Academies of Sciences on the theme “Non-linear models and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 January 2021                   doi:10.20944/preprints202101.0360.v1

https://doi.org/10.20944/preprints202101.0360.v1


symmetrologic analysis in biomechanics, bioinformatics, and the theory of 

selforganizing systems”, where the author was a scientific chief from the Russian 

Academy of Sciences. The author is grateful to G. Darvas, E. Fimmel, A.A. 

Koblyakov, M. He, Z.B. Hu, Yu.I. Manin, I.V. Stepanyan, V.I. Svirin and G.K. 

Tolokonnikov for their collaboration. 

 

 

References. 

 

Albrecht-Buehler G. Asymptotically increasing compliance of genomes with     

          Chargaff's second parity rules through inversions and inverted transpositions.       

          Proc Natl Acad Sci U S A. November 21; 103(47): 17828–17833 (2006). 

Chargaff, E. Preface to a Grammar of Biology: A hundred years of nucleic acid  

          research. - Science, 172, 637-642(1971). 

Fimmel E., Petoukhov S.V. Development of Models of Quantum Biology  

         Based on the Tensor Product of Matrices. In: Hu Z., Petoukhov S., He M.  

         (eds). Advances in Intelligent Systems and Computing, v. 1126, p.126-135.  

         Springer, Cham (2020), DOI https://doi.org/10.1007/978-3-030-39162-1_12. 

Geesink H.J.H., Meijer D.K.F. Quantum wave information of life revealed.  

          NeuroQuantology, vol. 14, issue 1 (March 2016),  

          doi: 10.14704/nq.2016.14.1.911 

Harkin A.A., Harkin J.B. Geometry of Generalized Complex Numbers.  

          Mathematics Magazine, v. 77(2), p. 118-29 (2004). 

Hofstadter D.R. Gödel, Escher, Bach. An Eternal Golden Braid. N.Y.: Vintage  

           Books, 777 p. (1980). 

Jordan P. Die Quantenmechanik und die Grundprobleme der Biologie und  

       Psychologie. Naturwissenschaften 20, 815–821, 1932 (doi:10.1007/BF01494844) 

Kantor I.L., Solodovnikov A.S. Hypercomplex numbers. Berlin, New York:  

        Springer-Verlag (1989).  ISBN 978-0-387-96980-0. 

McFadden J., Al-Khalili J. The origins of quantum biology. Proceedings of the  

        Royal Society A, Vol. 474, Issue 2220, p. 1-13, 12 December 2018,  

         https://doi.org/10.1098/rspa.2018.0674. 

Nalimov V.V. I am scattering thoughts (in Russian: Razbrasyvaiu mysli).  Moscow,  

         Center for Humanitarian Initiatives (2015).  ISBN 978-5-98712-521-2].  

Pauli W. Writings on Physics and Philosophy. Ed. by C.P. Enz and K. von Meyenn,  

          Springer, Berlin, 1994. 

Petoukhov S.V. Matrix genetics, algebrases of genetic code, noise immunity.   

          Moscow, RCD, 316 p. (2008, in Russian). ISBN 978-5-93972-643-6. 

Petoukhov S.V. Nucleotide Epi-Chains and New Nucleotide Probability Rules in  

          Long DNA Sequences. Preprints 2019, 2019040011, 17 pages (doi:  

          10.20944/preprints201904.0011.v1), 

           https://www.preprints.org/manuscript/201904.0011/v1   

Petoukhov S.V. Hyperbolic Rules of the Cooperative Organization of Eukaryotic    

           and Prokaryotic Genomes. Biosystems, 198, 104273 (2020a). 

Petoukhov S.V. Modeling inherited physiological structures based on hyperbolic  

        numbers, BioSystems (2020b), https://doi.org/10.1016/j.biosystems.2020.104285. 

Petoukhov S.V.  Hyperbolic Rules of the Oligomer Cooperative Organization of       

          Eukaryotic and Prokaryotic Genomes. Preprints 2020, 2020050471 (2020c),   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 January 2021                   doi:10.20944/preprints202101.0360.v1

https://www.preprints.org/manuscript/201904.0011/v1
https://doi.org/10.1016/j.biosystems.2020.104285
https://doi.org/10.1016/j.biosystems.2020.104285
https://doi.org/10.1016/j.biosystems.2020.104285
https://doi.org/10.1016/j.biosystems.2020.104285
https://doi.org/10.20944/preprints202101.0360.v1


doi:10.20944/preprints202005.0471.v2, https://www.preprints.org/manuscript/202005

.0471/v2. 

Petoukhov S.V., He M. Symmetrical Analysis Techniques for Genetic Systems and  

        Bioinformatics: Advanced Patterns and Applications. Hershey, USA, IGI Global  

        (2010). 

Prabhu V. V. Symmetry observation in long nucleotide sequences.  Nucleic Acids  

        Res., 21, 2797-2800 (1993). 

Stambuk N. Circular coding properties of gene and protein sequences. Croat. Chem.  

         Acta, 72, pp. 999-1008 (1999). 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 January 2021                   doi:10.20944/preprints202101.0360.v1

https://www.preprints.org/manuscript/202005.0471/v2
https://www.preprints.org/manuscript/202005.0471/v2
https://doi.org/10.20944/preprints202101.0360.v1

