You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Review

Functional Connectivity in Multi-Habitat Marine Species

Altmetrics

Downloads

542

Views

626

Comments

0

Submitted:

15 January 2021

Posted:

18 January 2021

You are already at the latest version

Alerts
Abstract
Many marine species use different habitats at different stages of their life cycle. Functional connectivity, the degree to which the seascape facilitates or impedes movement between habitat patches, is poorly studied in marine systems. We reviewed the scientific literature to explore the various barriers preventing functional connectivity between marine habitats and how the removal of these barriers may restore connectivity. To our knowledge, this is the first systematic review to investigate functional connectivity between life cycle habitats for a range of marine species. A total of 4,499 records were identified and screened, leaving 69 publications eligible for review. The results highlighted a range of distances between nursery and adult habitats that limited functional connectivity for a number of species, predominantly reef fishes. For some species, adults were absent on reefs >9km from the closest nursery habitat, suggesting a threshold for connectivity. Similarly, increased distance between spawning and settlement habitats decreased settling success of larvae of various taxa. Pelagic larval duration, seascape topography and climate change were also shown to impact functional connectivity during the larval phase. The removal and mitigation of barriers preventing functional connectivity, including dams and habitat fragmentation, restored connectivity between disconnected life cycle habitats, but the efficacy of these approaches differed between species and studies. The results of this review deepen our understanding of marine functional connectivity between life cycle habitats via larval, juvenile, and adult dispersal. These findings have implications for the design and management of marine reserve networks.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated