Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment

Version 1 : Received: 1 December 2020 / Approved: 4 December 2020 / Online: 4 December 2020 (17:15:12 CET)
Version 2 : Received: 28 December 2020 / Approved: 29 December 2020 / Online: 29 December 2020 (17:15:56 CET)

A peer-reviewed article of this Preprint also exists.

Braudeau, E.; Mohtar, R.H. Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems 2021, 9, 8. Braudeau, E.; Mohtar, R.H. Hydrostructural Pedology, Culmination of the Systemic Approach of the Natural Environment. Systems 2021, 9, 8.

Abstract

The subject of this article is the dynamics of water in a soil pedostructure sample whose internal environment is subjected to a potential gradient created by the departure of water through surface evaporation. This work refers entirely to the results and conclusions of a fundamental theoretical study focused on the molecular thermodynamic equilibrium of the two aqueous phases of the soil pedostructure. The new concepts and descriptive variables of the hydro-thermodynamic equilibrium state of the soil medium, which have been established at the molecular level of the fluid phases of the pedostructure (water and air) in a previous article, are recalled here in the systemic paradigm of hydrostructural pedology. They allow access to the molecular description of water migration in the soil and go beyond the classical mono-scale description of soil water dynamics. We obtain a hydro-thermodynamic description of the soil's pedostructure at different hydro-functional scale levels including those relating to the water molecule and its atoms. The experimental results show a perfect agreement with the theory, validating at the same time the systemic approach which was the framework.

Keywords

Pedostructure; Systemic modelling; Systemic variables, hydro-thermodynamic equilibrium; Gibbs free energy; Fundamental thermodynamic variables; molecular, real and Eulerian fluxes, hydric conductivity of the pedostructure.

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.