Preprint
Article

This version is not peer-reviewed.

CO2 Methanation of Biogas Over 20 wt% Ni-Mg-Al Catalyst: On the Effect of N2, CH4, and O2 on CO2 Conversion Rate

A peer-reviewed article of this preprint also exists.

Submitted:

27 August 2020

Posted:

30 August 2020

You are already at the latest version

Abstract
Biogas contains more than 40% CO2 that can be removed to produce high quality CH4. Recently, CH4 production from CO2 methanation has been reported in several studies. In this study, CO2 methanation of biogas was performed over a 20 wt% Ni-Mg-Al catalyst, and the effects of CO2 conversion rate and CH4 selectivity were investigated as a function of CH4, O2, H2O, and N2 compositions of the biogas. At a gas hourly space velocity (GHSV) of 30,000/h, the CO2 conversion rate was ~79.3% with a CH4 selectivity of 95%. In addition, the effects of the reaction temperature (200–450 °C), GHSV (21,000–50,000/h), and H2/CO2 molar ratio (3–5) on the CO2 conversion rate and CH4 selectivity over the 20 wt% Ni-Mg-Al catalyst were evaluated. The characteristics of the catalyst were analyzed using Brunauer-Emmett-Teller (BET) surface area analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The catalyst was stable for approximately 200 h at a GHSV of 30,000/h and a reaction temperature of 350 °C. CO2 conversion and CH4 selectivity were maintained at 75% and 93%, respectively, and the catalyst was therefore concluded to exhibit stable activity.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated