Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Microbiome Management by Biological and Chemical Treatments in Maize is Linked to Plant Health

Version 1 : Received: 19 August 2020 / Approved: 21 August 2020 / Online: 21 August 2020 (05:10:34 CEST)

A peer-reviewed article of this Preprint also exists.

Kusstatscher, P.; Wicaksono, W.A.; Thenappan, D.P.; Adam, E.; Müller, H.; Berg, G. Microbiome Management by Biological and Chemical Treatments in Maize Is Linked to Plant Health. Microorganisms 2020, 8, 1506. Kusstatscher, P.; Wicaksono, W.A.; Thenappan, D.P.; Adam, E.; Müller, H.; Berg, G. Microbiome Management by Biological and Chemical Treatments in Maize Is Linked to Plant Health. Microorganisms 2020, 8, 1506.

Abstract

The targeted application of plant growth promoting rhizobacteria (PGPR) provides the key for a future sustainable agriculture with reduced pesticide application. PGPR interaction with the indigenous microbiota is poorly understood but essential to develop reliable applications. Therefore, Stenotrophomonas rhizophila SPA-P69 was applied as seed coating and in combination with a fungicide based on the active ingredients fludioxonil, metalaxyl-M, captan and ziram. Plant performance and rhizosphere composition of treated and non-treated maize plants of two field trials were analyzed. Plant health was significantly increased by treatment; however overall corn yield was not changed. By applying high-throughput amplicon sequencing of the 16S rRNA and the ITS genes, the bacterial and fungal changes in the rhizosphere due to different treatments were determined. Despite treatments had a significant impact on the rhizosphere microbiota (9- 12%), the field site was identified as main driver (27- 37%). Soil microbiota composition from each site was significantly different, which explains the site-specific effects. In this study we were able to show first indications how PGPR treatments increase plant health via microbiome shifts in a site-specific manner. This way first steps towards a detailed understanding of PGPRs and developments of consistently efficient applications in diverse environments are set.

Keywords

Zea mays; maize; corn; rhizosphere; 16S rRNA gene; ITS; fungicide; plant growth promoting rhizobacteria

Subject

Biology and Life Sciences, Agricultural Science and Agronomy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.