Preprint Concept Paper Version 1 Preserved in Portico This version is not peer-reviewed

Operationalizing Ensemble Models for Scientific Advice to Fisheries Management

Version 1 : Received: 3 August 2020 / Approved: 4 August 2020 / Online: 4 August 2020 (04:58:51 CEST)

How to cite: Jardim, E.; Azevedo, M.; Brodziak, J.; N. Brooks, E.; F. Johnson, K.; Klibansky, N.; P. Millar, C.; Minto, C.; Mosqueira, I.; D.M. Nash, R.; Vasilakopoulos, P.; K. Wells, B. Operationalizing Ensemble Models for Scientific Advice to Fisheries Management. Preprints 2020, 2020080078 (doi: 10.20944/preprints202008.0078.v1). Jardim, E.; Azevedo, M.; Brodziak, J.; N. Brooks, E.; F. Johnson, K.; Klibansky, N.; P. Millar, C.; Minto, C.; Mosqueira, I.; D.M. Nash, R.; Vasilakopoulos, P.; K. Wells, B. Operationalizing Ensemble Models for Scientific Advice to Fisheries Management. Preprints 2020, 2020080078 (doi: 10.20944/preprints202008.0078.v1).

Abstract

There are uncertainties associated with every phase of the stock assessment process, ranging from the collection of data, assessment model choice, model assumptions and interpretation of risk to the implementation of management advice. The dynamics of fish populations are complex, and our incomplete understanding of those dynamics (and limited observations of important mechanisms) necessitate that models are simpler than nature. The aim is for the model to capture enough of the dynamics to accurately estimate trends and abundance and to provide advice to managers about sustainable harvests. The \textit{status quo} approach to assessment modelling has been to identify the `best' model, based on diagnostics and model selection criteria, and to generate advice from that model, mostly ignoring advice from other model configurations regardless of how closely they performed relative to the chosen model. We review the suitability of the ensemble modelling paradigm to more fully capture uncertainty in stock assessment model building and the provision of advice. We recommend further research to evaluate potential gains in modelling performance and advice from the use of ensemble modelling, while also suggesting revisions to the formal process for reviewing models and providing advice to management bodies.

Subject Areas

assessment, conservation, exploitation, management, multimodel, natural resources, ensemble, model, fisheries

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.