Preprint
Article

A Novel Integrated Machine & Business Intelligence Framework for Sensor Data Analysis

This version is not peer-reviewed.

Submitted:

27 July 2020

Posted:

29 July 2020

You are already at the latest version

Abstract
Increased smart devices in various industries is creating numerous sensors in each of the equipment prompting the need for methods and models for sensor data. Current research proposes a systematic approach to analyze the data generated from sensors attached to industrial equipment. The methodology involves data cleaning, preprocessing, basics statistics, outlier, and anomaly detection. Present study presents the prediction of RUL by using various Machine Learning models like Regression, Polynomial Regression, Random Forest, Decision Tree, XG Boost. Hyper Parameter Optimization is performed to find the optimal parameters for each variable. In each of the model for RUL prediction RMSE, MAE are compared. Outcome of the RUL prediction should be useful for decision maker to drive the business decision; hence Binary classification is performed, and business case analysis is performed. Business case analysis includes the cost of maintenance and cost of non-maintaining a particular asset. Current research is aimed at integrating the machine intelligence and business intelligence so that the industrial operations optimized both in resource and profit.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

263

Views

119

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated