Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Soft Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD Inkjet Printing

Version 1 : Received: 22 March 2020 / Approved: 24 March 2020 / Online: 24 March 2020 (08:30:10 CET)
Version 2 : Received: 20 April 2020 / Approved: 22 April 2020 / Online: 22 April 2020 (09:54:45 CEST)

How to cite: Das, A.; Weiland, S. Soft Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD Inkjet Printing. Preprints 2020, 2020030355. https://doi.org/10.20944/preprints202003.0355.v1 Das, A.; Weiland, S. Soft Sensing Based In Situ Control of Thermo-Fluidic Processes in DoD Inkjet Printing. Preprints 2020, 2020030355. https://doi.org/10.20944/preprints202003.0355.v1

Abstract

This paper introduces a closed-loop control strategy for maintaining consistency of ink temperature in commercial Drop on Demand (DoD) inkjet printing. No additional sensors or additional actuators are installed in the printhead while achieving the consistency in ink temperature. To this end, this paper presents a novel in situ sensing-actuation policy at every individual ink-nozzle, where the jetting mechanism has three distinct roles. It is used for jetting liquid droplet onto the print media based on the print-job. It is used as a softsensor to estimate the real-time liquid temperature of the jetting nozzle. While not jetting liquid, it is used as a heating actuator to minimize the gradient of liquid temperature among jetting nozzles. The soft-sensing based in situ controller is implemented in an experimentally validated digital twin that models the thermo-fluidic processes of the printhead. The digital twin is scalable and flexible to incorporate an arbitrary number of inknozzles, making the control strategy applicable for future designs of the printhead.

Keywords

Thermo-Fluidic Process; Inkjet Printing; Feedback Control

Subject

Engineering, Control and Systems Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.