Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Use of a Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities

Version 1 : Received: 20 December 2019 / Approved: 21 December 2019 / Online: 21 December 2019 (12:28:21 CET)

A peer-reviewed article of this Preprint also exists.

Das, P.E.; Majdalawieh, A.F.; Abu-Yousef, I.A.; Narasimhan, S.; Poltronieri, P. Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials 2020, 13, 876. Das, P.E.; Majdalawieh, A.F.; Abu-Yousef, I.A.; Narasimhan, S.; Poltronieri, P. Use of A Hydroalcoholic Extract of Moringa oleifera Leaves for the Green Synthesis of Bismuth Nanoparticles and Evaluation of Their Anti-Microbial and Antioxidant Activities. Materials 2020, 13, 876.

Abstract

The use of plant extracts in the synthesis of metal nanoparticles is a very attractive approach in the field of green synthesis. To benefit from the potential synergy between the biological activities of the Moringa oleifera leaves extract and metallic bismuth, our study aimed at synthesizing bismuth nanoparticles using a hydroalcoholic extract of M. oleifera leaves as a means of green synthesis that yields nontoxic products and reduces the production of wasteful material. To this end, the M. oleifera leaves extract was treated with a bismuth nitrate pentahydrate solution. A color change from light brown to dark brown indicates the synthesis of bismuth nanoparticles. The total phenolic content in the M. oleifera leaves extract used was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. Antioxidant property of MO synthesised bismuth Nanoparticles was evaluated and in line with the extract used in the synthesis of NPs. The physical properties of the synthesized bismuth nanoparticles were characterized using UV-Vis spectrophotometer, FT-IR spectrometer, TEM, SEM, and XRD. The synthesized bismuth nanoparticles have a size in the range of 40.4-57.8 nm with amorphous morphology. Using DPPH and phosphomolybdate assays, our findings revealed that the M. oleifera leaves extract and the synthesized bismuth nanoparticles possess antioxidant properties. Using resazurin microtiter assay, we also demonstrate that the M. oleifera leaves extract and the synthesized bismuth nanoparticles exert potent anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecalis, similarly to the inhibition exerted by Moringa extract, especially against Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 µg/mL; MIC values for the bismuth nanoparticles: 500, 500, 500, and 250 µg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized bismuth nanoparticles display relatively stronger anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 µg/mL; MIC values for the bismuth nanoparticles: 250, 250, 62.5, and 62.5 µg/mL, respectively). Thus, the hydroalcoholic extract of M. oleifera leaves was successfully used in the synthesis of bismuth nanoparticles, showing a positive antioxidant, anti-bacterial, and anti-fungal activity. Therefore, the synthesized bismuth nanoparticles can potentially be employed in the alleviation of symptoms associated with oxidative stress and in the topic treatment of Candida infections.

Keywords

Moringa oleifera; bismuth nanoparticles; polyphenolics; anti-bacterial; anti-fungal; antioxidant

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.