Preprint Article Version 1 This version is not peer-reviewed

Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants

Version 1 : Received: 19 December 2019 / Approved: 20 December 2019 / Online: 20 December 2019 (11:05:22 CET)

A peer-reviewed article of this Preprint also exists.

Ellenberger, J.; Siefen, N.; Krefting, P.; Schulze Lutum, J.-B.; Pfarr, D.; Remmel, M.; Schröder, L.; Röhlen-Schmittgen, S. Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants. Agronomy 2020, 10, 142. Ellenberger, J.; Siefen, N.; Krefting, P.; Schulze Lutum, J.-B.; Pfarr, D.; Remmel, M.; Schröder, L.; Röhlen-Schmittgen, S. Effect of UV Radiation and Salt Stress on the Accumulation of Economically Relevant Secondary Metabolites in Bell Pepper Plants. Agronomy 2020, 10, 142.

Journal reference: Agronomy 2020, 10, 142
DOI: 10.3390/agronomy10010142

Abstract

The green biomass of horticultural plants contains valuable secondary metabolites (SM) which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating of the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4-5 W/m²; UVB 10-14 W/m² for 3 hours per day) or a combination of both stressors. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on aboveground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights in ontogenetical effects at the leaf level and temporal development of SM contents over time. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: R2 = 0.46 – 0.66; Graveobioside A: R2 = 0.51 – 0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress is a promising tool for enriching plant leaves with valuable SM without major effects on plant biomass. All data is available online [1].

Subject Areas

Capsicum annuum; flavonoids; fluorescence monitoring; bio-waste utilization

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.