Preprint
Article

This version is not peer-reviewed.

β-HPV 8E6 Attenuates ATM and ATR Signaling in Response to UV Damage

A peer-reviewed article of this preprint also exists.

Submitted:

27 September 2019

Posted:

30 September 2019

You are already at the latest version

Abstract
Given the high prevalence of cutaneous genus beta human papillomavirus (β-HPV) infections, it is important to understand how they are manipulating their host cells. This is particularly true for cellular responses to UV damage, since our skin is continually exposed to UV. The E6 protein from β-HPV (β-HPV E6) decreases the abundance of two essential UV-repair kinases (ATM and ATR). Since β-HPV E6 reduces their availability, the impact on downstream signaling events has been uncertain. We demonstrate that β-HPV E6 decreases ATM and ATR activation. This inhibition extended to XPA, an ATR target necessary for UV repair, lowering both its phosphorylation and accumulation. β-HPV E6 hinders POLη phosphorylation and foci formation, critical steps in translesion synthesis. ATM’s phosphorylation of BRCA1 is also attenuated by β-HPV E6. However, β-HPV E6’s hindrance of ATM/ATR signaling during UV-associated cell cycle arrest was incomplete. While there was less phosphorylation of immediate downstream targets (CHK1), events further down the cascade were not decreased. These observations are consistent with β-HPV infections making UV radiation more deleterious and support the proposed role of β-HPV in early stages of non-melanoma skin cancer development.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated