Preprint
Article

This version is not peer-reviewed.

Extraction of Polyphenols and Synthesis of New Activated Carbon from Spent Coffee Grounds

A peer-reviewed article of this preprint also exists.

Submitted:

06 August 2019

Posted:

07 August 2019

Read the latest preprint version here

Abstract
A valorization process of spent coffee grounds (SCG) was studied. Thus, a two-stage process, a stage of extraction of the polyphenols and a stage of obtaining activated carbon (AC) by a carbonization process, was performed. The extraction was carried out with a hydro-alcoholic solution in a pressure reactor, modifying time and temperature. To optimize the extraction of polyphenols, a two-level factorial design with three replications at the central values was used. The best results were obtained by performing the extraction at 80 ºC during 30 min, using a mixture of EtOH:H2O 1:1 (v/v) as extraction solution. Caffeine and chlorogenic acid were the most abundant compounds in the analysed extracts, ranging from 0.09 to 4.8 mg∙g-1 and 0.06 to 9.7 mg∙g-1, respectively. The precursor obtained in the extraction stage were transformed into AC. An experimental design was realized in order to analyze the influence of different variables in the AC obtained process (reaction time and amount of potassium hydroxide used). Actived carbons with BET specific surface (SBET) comprised between 1600 m2∙g-1 and 2330 m2∙g-1 had a microporous surface. Under the optimum conditions, the obtained AC presented a maximum adsorption capacity of methylene blue (qm) between 411 mg∙g-1 and 813 mg∙g-1.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated