Preprint Data Descriptor Version 1 Preserved in Portico This version is not peer-reviewed

Waste to Carbon: Preliminary Research on Mushroom Spent Compost Torrefaction

Version 1 : Received: 18 June 2019 / Approved: 20 June 2019 / Online: 20 June 2019 (03:40:36 CEST)

How to cite: Syguła, E.; A. Koziel, J.; Białowiec, A. Waste to Carbon: Preliminary Research on Mushroom Spent Compost Torrefaction. Preprints 2019, 2019060189. https://doi.org/10.20944/preprints201906.0189.v1 Syguła, E.; A. Koziel, J.; Białowiec, A. Waste to Carbon: Preliminary Research on Mushroom Spent Compost Torrefaction. Preprints 2019, 2019060189. https://doi.org/10.20944/preprints201906.0189.v1

Abstract

Mushroom production in Poland is an important and dynamically developing element of diverse agriculture. Mushroom spent compost (MSC) is major waste generated during production, i.e., MSC: mushrooms is ~5:1. To date, the main use of MSC is soil application as organic fertilizer. To date, several methods of MSC treatment have been researched and developed including production of compost, bioethanol, biogas, enzyme lactase, xylo-saccharides, and hydrogen. Torrefaction may be considered a novel approach for biomass valorization. Thus, we are pioneering the potential use of MSC valorization via torrefaction. We explored valorizing the waste biomass of MSC via thermal treatment – torrefaction (‘roasting’) to produce biochar with improved fuel properties. Here for the first time, we examined and summarized the MSC torrefaction thermogravimetric analyses, fuel properties data of raw biomass of MSC and biochars generated from MSC via torrefaction. The effects of torrefaction temperature (200~300 °C), process time (20~60 min), on fuel properties of the resulting biochars were summarized. The dataset contains results of thermogravimetric analysis (TGA) as well as proximate analyses of MSC and generated biochars. The presented data are useful in determining MSC torrefaction reaction kinetics, activation energy and to further techno-economical modeling of the feasibility of MSC valorization via torrefaction. MSC torrefaction could be exploited as part of valorization resulting from a synergy between an intensive mushroom production with the efficient production of high-quality renewable fuel.

Keywords

mushrooms; mushroom spent compost; renewable energy; biochar; biomass valorization; torrefaction; fuel properties; proximate analysis; carbon sequestration

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.