Preprint
Article

This version is not peer-reviewed.

Designing Optimal Breakfast for the United States Using Linear Programming and the NHANES 2011-2014 Database. A Study from the International Breakfast Research Initiative (IBRI)

A peer-reviewed article of this preprint also exists.

Submitted:

08 May 2019

Posted:

10 May 2019

You are already at the latest version

Abstract
The quality of dietary patterns can be optimized using a mathematical technique known as linear programming (LP). LP methods have rarely been applied to individual meals. The present LP models optimized the breakfast meal for those participants in the nationally representative National Health and Nutrition Examination Survey 2011-2014 who ate breakfast (n=11,565). The Nutrient Rich Food Index (NRF9.3) was a measure of diet quality. Breakfasts in the bottom tertile of NRF9.3 scores (T1) were LP-modeled to meet nutrient requirements without deviating too much from current eating habits. Separate LP models were run for children and for adults. The LP-modeled breakfasts resembled the existing ones in the top tertile of NRF9.3 scores (T3), but were more nutrient-rich. Favoring fruit, cereals, and dairy, the LP-modeled breakfasts had less meat, added sugars and fats but more whole fruit and 100% juices, more whole grains, and more milk and yogurt. LP modeling methods can build on existing dietary patterns to construct food-based dietary guidelines and identify individual meals and/or snacks that need improvement.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated