Submitted:
24 June 2024
Posted:
25 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Ethical Statement
Study Design and Population
Dietary Data Collection
Dietary Pattern Analysis
Characterization of the Study Population
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization. Draft recommendations for the prevention and management of obesity over the life course, including potential targets. 2021. Available online: https://www.who.int/publications/m/item/who-discussion-paper-draft-recommendations-for-the-prevention-and-management-of-obesity-over-the-life-course-including-potential-targets(accessed on January 2024).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Estivaleti, J.M.; Guzman-Habinger, J.; Lobos, J.; et al. Time trends and projected obesity epidemic in Brazilian adults between 2006 and 2030. Sci Rep 2022, 12, 12699. [Google Scholar] [CrossRef]
- Ferreira, A.P.S.; Szwarcwald, C.L.; Damacena, G.N.; et al. Increasing trends in obesity prevalence from 2013 to 2019 and associated factors in Brazil. Rev Bras Epidemiol 2021, 24, e210009. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Ministério da Saúde, Secretaria de Vigilância em Saúde e Ambiente & Departamento de Análise Epidemiológica e Vigilância de Doenças Não Transmissíveis. Vigitel Brasil 2023: Vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2023. 2023. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/vigitel/vigitel-brasil-2023-vigilancia-de-fatores-de-risco-e-protecao-para-doencas-cronicas-por-inquerito-telefonico/view(accessed on January 2024).
- Hu, F.B. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Schulze, M.B. Can dietary patterns help us detect diet–disease associations? Nutr Res Rev 2005, 18, 241–248. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). A series of systematic reviews on the relationship between dietary patterns and health outcomes. 2014; 501p. Available online: https://nesr.usda.gov/sites/default/files/2019-06/DietaryPatternsReport-FullFinal2.pdf(accessed on January 2024).
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; et al. Application of a New Statistical Method to Derive Dietary Patterns in Nutritional Epidemiology. Am J Epidemiol 2004, 159, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.B.; Almeida, R.M.; Sichieri, R.; et al. Association of dietary patterns with BMI and waist circumference in a low-income neighborhood in Brazil. Br J Nutr 2010, 104, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Jessri, M.; Wolfinger, R.D.; Lou, W.Y.; et al. Identification of dietary patterns associated with obesity in a nationally representative survey of Canadian adults: application of a priori, hybrid, and simplified dietary pattern techniques. AJCN 2017, 105, 669–684. [Google Scholar] [CrossRef]
- Ng, A.P.; Jessri, M.; L’Abbe, M.R. Using partial least squares to identify a dietary pattern associated with obesity in a nationally-representative sample of Canadian adults: Results from the Canadian Community Health Survey-Nutrition 2015. PloS one 2021, 16, e0255415. [Google Scholar] [CrossRef]
- Arruda, S.P.M.; Silva, A.A.; Kac, G.; et al. Dietary patterns are associated with excess weight and abdominal obesity in a cohort of young Brazilian adults. Eur J Nutr 2016, 55, 2081–2091. [Google Scholar] [CrossRef]
- Muniz, S.C.R.S.; Barbieri, M.A.; Sanches, G.F.; et al. Dietary pattern changes, obesity and excess body fat in adults of a Brazilian birth cohort. J Hum Nutr Diet 2023, 36, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares 2017-2018: análise do consumo alimentar pessoal no Brasil (Household Budget Survey 2017-2018: analysis of personal food consumption in Brazil); IBGE: Rio de Janeiro, 2020; Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101742.pdf(accessed on January 2024).
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc 2004, 104, 595–603. [Google Scholar] [CrossRef]
- Giuntini, E.B.; Coelho, K.S.; Grande, F.; et al. 12th IFDC 2017 Special issue—Brazilian Nutrient Intake Evaluation Database: an essential tool for estimating nutrient intake data. J Food Compos Anal 2019, 83, 103286. [Google Scholar] [CrossRef]
- World Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series, No. 916; World Health Organization: Geneva, 2003; Available online: https://www.who.int/publications/i/item/924120916X pdf(accessed on March 2024).
- World Health Organization. Healthy diet WHO Fact Sheet, No 394. 2018. Available online: https://www.who.int/publications/m/item/healthy-diet-factsheet394(accessed on January 2024).
- Stelmach-Mardas, M.; Rodacki, T.; Dobrowolska-Iwanek, J.; et al. Link between Food Energy Density and Body Weight Changes in Obese Adults. Nutrients 2016, 8, 229. [Google Scholar] [CrossRef]
- Livingstone, K.M.; McNaughton, S.A. Dietary patterns by reduced rank regression are associated with obesity and hypertension in Australian adults. Br J Nutr 2017, 117, 248–259. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Sexton-Dhamu, M.J.; Pendergast, F.J.; et al. Energy-dense dietary patterns high in free sugars and saturated fat and associations with obesity in young adults. Eur J Nutr 2022, 61, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Ministério da Saúde, Secretaria de Atenção à Saúde &Departamento de Atenção Básica. Guia alimentar para a população brasileira (Dietary Guidelines for the Brazilian population), 2nd ed.; Ministério da Saúde, Secretaria de Atenção àSaúde, Departamento de Atenção Básica: Brasília, 2014; Available online: https://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2ed.pdf(accessed on April 2024).
- Willett, W.; Rockström, J.; Loken, B.; et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Granado, F.S.; Maia, E.G.; Mendes, L.L.; et al. Reduction of traditional food consumption in Brazilian diet: trends and forecasting of bean consumption (2007-2030). Public health Nutr 2021, 24, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Santin, F.; Gabe, K.T.; Levy, R.B.; et al. Food consumption markers and associated factors in Brazil: distribution and evolution, Brazilian National Health Survey, 2013 and 2019. Cad Saude Publica 2022, 38, e00118821. [Google Scholar] [CrossRef]
- Sichieri, R. Dietary Patterns and Their Associations with Obesity in the Brazilian City of Rio de Janeiro. Obes Res 2002, 10, 42–48. [Google Scholar] [CrossRef]
- Sardinha, A.N.; Canella, D.S.; Martins, A.P.B.; et al. Dietary sources of fiber intake in Brazil. Appetite 2014, 79, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Claro, R.M.; Monteiro, C.A. Family income, food prices, and household purchases of fruits and vegetables in Brazil. Rev Saude Publica 2010, 44, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Verly-Jr, E.; Oliveira, D.C.R.S.; Sichieri, R. Custo de uma alimentação saudável e culturalmente aceitável no Brasil em 2009 e 2018. Rev Saude Publica 2021, 55 (Suppl. 1), 7s. [Google Scholar]
- Hernández-Cordero, S.; Barquera, S.; Rodríguez-Ramírez, S.; et al. Substituting water for sugar-sweetened beverages reduces circulating triglycerides and the prevalence of metabolic syndrome in obese but not in overweight Mexican women in a randomized controlled trial. J Nutr 2014, 144, 1742–1752. [Google Scholar] [CrossRef]
- Duffey, K.J.; Poti, J. Modeling the Effect of Replacing Sugar-Sweetened Beverage Consumption with Water on Energy Intake, HBI Score, and Obesity Prevalence. Nutrients 2016, 8, 395. [Google Scholar] [CrossRef]
- Marino, M.; Puppo, F.; Del Bo’, C.; et al. A Systematic Review of Worldwide Consumption of Ultra-Processed Foods: Findings and Criticisms. Nutrients 2021, 13, 2778. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Kliemann, N.; Huybrechts, I.; et al. Consumption of ultra-processed foods associated with weight gain and obesity in adults: A multi-national cohort study. Clin Nutr 2021, 40, 5079–5088. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Lara-Castor, L.; Micha, R.; Cudhea, F.; et al. Sugar-sweetened beverage intakes among adults between 1990 and 2018 in 185 countries. Nat Commun 2023, 14, 5957. [Google Scholar] [CrossRef]
- Nguyen, M.; Jarvis, S.E.; Tinajero, M.G.; Yu; et al. Sugar-sweetened beverage consumption and weight gain in children and adults: a systematic review and meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr 2023, 117, 160–174. [Google Scholar] [CrossRef]
- Kant, A.K.; Graubard, B.I. 40-year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet 2015, 115, 50–63. [Google Scholar] [CrossRef]
- Bezerra, I.N.; Gurgel, A.O.C.; Barbosa, R.G.B.; et al. Dietary Behaviors among Young and Older Adults in Brazil. J Nutr Health Aging 2018, 22, 575–580. [Google Scholar] [CrossRef]
- Zhao, H.; Andreyeva, T. Diet Quality and Health in Older Americans. Nutrients 2022, 14, 1198. [Google Scholar] [CrossRef]
- Costa, D.V.P.; Lopes, M.S.; Mendonça, R.D.; et al. Food consumption differences in Brazilian urban and rural areas: the National Health Survey. Cien Saude Colet 2021, 26, 3805–3813. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Compete, M.; Burrola-Méndez, S.; Lozano-Marrufo, A.; et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: a global systematic literature review. Int J Equity Health 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Westbury, S.; Ghosh, I.; Jones, H.M.; et al. The influence of the urban food environment on diet, nutrition and health outcomes in low-income and middle-income countries: a systematic review. BMJ Glob Health 2021, 6, e006358. [Google Scholar] [CrossRef]
- Ridder, D.; Adriaanse, M.; Evers, C.; et al. Who diets? Most people and especially when they worry about food. Appetite 2014, 80, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Giacone, L.; Siegrist, M.; Hartmann, C. Food choices for weight loss: what dietary strategies would people use? Br J Nutr 2024, 131, 1268–1280. [Google Scholar] [CrossRef]
- Nagao-Sato, S.; Reicks, M. Food Away from Home Frequency, Diet Quality, and Health: Cross-Sectional Analysis of NHANES Data 2011-2018. Nutrients 2022, 14, 3386. [Google Scholar] [CrossRef]
- Wellard-Cole, L.; Davies, A.; Allman-Farinelli, M. Contribution of foods prepared away from home to intakes of energy and nutrients of public health concern in adults: a systematic review. Crit Rev Food Sci Nutr 2022, 62, 5511–5522. [Google Scholar] [CrossRef]
- Bezerra, I.N.; Vasconcelos, T.M.; Cavalcante, J.B.; et al. Evolution of out-of-home food consumption in Brazil in 2008-2009 and 2017-2018. Ver Saude Publica 2021, 55, 6s. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Globalization of food systems in developing countries: impact on food security and nutrition. 2004; 97p. Available online: https://www.fao.org/documents/card/es?details=25f0d49b-c900-5879-9cdf-ffbaa70ce6e3/(accessed on January 2024).
- Baker, P.; Machado, P.; Santos, T.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes Rev 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E. Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability 2020, 12, 6280. [Google Scholar] [CrossRef]
- Anastasiou, K.; Baker, P.; Hadjikakou, M.; et al. A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. J Clean Prod 2022, 368, 133155. [Google Scholar] [CrossRef]
- Popkin, B.M.; Reardon, T. Obesity and the food system transformation in Latin America. Obes Rev 2018, 19, 1028–1064. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.; Craven, D.; Horsey, B.; et al. The role of diets and food systems in the prevention of obesity and non-communicable diseases in Fiji; FAO, 2021; 160p, Available online: https://www.fao.org/3/cb5194en/cb5194en.pdf(accessed on January 2024).
- Parajára, M.C.; Colombet, Z.; Machado, Í.E.; et al. Mortality attributable to diets low in fruits, vegetables, and whole grains in Brazil in 2019: evidencing regional health inequalities. Public Health 2023, 224, 123–130. [Google Scholar] [CrossRef]
- Luo, H.; Dodd, K.W.; Arnold, C.D.; et al. Advanced Dietary Analysis and Modeling: A Deep Dive into the National Cancer Institute Method. J Nutr 2022, 152, 2615–2625. [Google Scholar] [CrossRef]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; et al. Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J Am Diet Assoc 2006, 106, 1640–1650. [Google Scholar] [CrossRef]
- Thompson, F.E.; Kirkpatrick, S.I.; Subar, A.F.; et al. The National Cancer Institute’s Dietary Assessment Primer: A Resource for Diet Research. J Acad Nutr Diet 2015, 115, 1986–1995. [Google Scholar] [CrossRef]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv Nutr 2017, 8, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Ministério da Saúde, Secretaria de Atenção à Saúde & Departamento de Atenção Básica. Marco de referência da vigilância alimentar e nutricional na atenção básica; MS: Brasília, 2015; Available online: https://bvsms.saude.gov.br/bvs/publicacoes/marco_referencia_vigilancia_alimentar.pdf(accessed on April 2024).
- Louzada, M.L.C.; Couto, V.D.C.S.; Rauber, F.; et al. Food and Nutrition Surveillance System markers predict diet quality. Rev Saude Publica 2023, 57, 82. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.D.S.; Corvalán, C.; Deliza, R.; et al. Editorial: Strengthening food labeling policies in Brazil. Front Nutr 2023, 10, 1196243. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Decreto No 11.936, de 5 de março de 2024. Dispõe sobre a composição da cesta básica de alimentos no âmbito da Política Nacional de Segurança Alimentar e Nutricional e da Política Nacional de Abastecimento Alimentar. 2024. Available online: https://www.mdpi.com/2075-471X/12/6/90(accessed on April 2024).

| Response variables | ED-LF dietary pattern scores | |||
|---|---|---|---|---|
| Energy density | Fiber density | % Energy from total fat | PLS | |
| Predictor variables † | ||||
| Positive associations | ||||
| Solid fats | 0.222 | -0.077 | 0.120 | 0.290 |
| Breads | 0.249 | -0.094 | 0.008 § | 0.294 |
| Sugar-sweetened beverages | 0.136 | -0.155 | -0.033 | 0.274 |
| Fast foods | 0.243 | -0.172 | 0.064 | 0.361 |
| Sauces | 0.104 | -0.086 | 0.072 | 0.268 |
| Cheeses | 0.081 | -0.105 | 0.144 | 0.189 |
| Inverse associations | ||||
| Rice | -0.204 | 0.241 | -0.113 | -0.431 |
| Beans | -0.327 | 0.673 | -0.080 | -0.639 |
| Vegetables | -0.226 | 0.105 | 0.226 | -0.185 |
| Water | -0.072 | 0.062 | -0.005 ¥ | -0.177 |
| Fruits | -0.269 | 0.088 | -0.089 | -0.216 |
| Response variables | ||||
| Energy density | 1 | -0.608 | 0.299 | 0.686 |
| Fiber density | 1 | -0.244 | -0.699 | |
| % Energy from total fat | 1 | 0.156 | ||
| Food groups | All | Quintiles of the ED-LF dietary pattern | ||||
|---|---|---|---|---|---|---|
| Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | ||
| Dietary pattern score | 0.10 (0.07; 0.13) |
-1.53 (-1.57; -1.49) |
-0.47 (-0.48; -0.45) |
0.04 (0.02; 0.05) |
0.53 (0.51; 0.54) |
1.54 (1.51; 1.57) |
| Response variables | ||||||
| Energy density (kcal/g) | 1.78 (1.77; 1.79) |
1.35 (1.34; 1.36) |
1.52 (1.51; 1.53) |
1.71 (1.70; 1.72) |
1.93 (1.92; 1.95) |
2.27 (2.25; 2.29) |
| Fiber density (g/1,000 kcal) | 13.2 (13.0; 13.4) |
22.0 (21.7; 22.3) |
16.0 (15.8; 16.2) |
12.5 (12.3; 12.7) |
9.7 (9.5; 9.8) |
7.5 (7.4; 7.7) |
| Total fat intake (%) | 29.8 (29.6; 30.0) |
27.7 (27.4; 28.1) |
29.3 (29.0; 29.7) |
30.2 (29.8; 30.6) |
30.4 (30.0; 30.7) |
30.9 (30.5; 31.3) |
| Positively loaded food groups (g/day) † | Grams per day | |||||
| Solid fats | 7.7 (7.4; 8.1) |
3.8 (3.4; 4.2) |
4.7 (4.3; 5.0) |
5.9 (5.5; 6.4) |
8.2 (7.7; 8.8) |
14.6 (13.7; 15.5) |
| Breads | 50.2 (48.8; 51.6) |
27.7 (25.7; 29.6) |
35.4 (33.2; 37.6) |
42.1 (39.7; 44.5) |
55.7 (52.8; 58.6) |
82.7 (78.8; 86.6) |
| Sugar-sweetened beverages | 88.7 (83.5; 93.9) |
34.7 (27.6; 41.8) |
42.2 (35.9; 48.4) |
46.1 (40.8; 51.5) |
93.0 (83.4; 102.7) |
203.5 (188.3; 218.7) |
| Fast foods | 40.3 (38.1; 42.5) |
12.5 (10.1; 15.0) |
16.6 (14.5; 18.7) |
23.6 (21.1; 26.1) |
39.5 (35.9; 43.2) |
97.3 (90.3; 104.4) |
| Sauces | 1.7 (1.5; 1.9) |
0.3 (0.1; 0.4) |
0.3 (0.2; 0.5) |
0.5 (0.4; 0.7) |
0.8 (0.7; 1.0) |
5.7 (4.8; 6.6) |
| Cheeses | 6.1 (5.6; 6.7) |
2.3 (1.8; 2.8) |
2.9 (2.5; 3.4) |
4.2 (3.6; 4.9) |
6.5 (5.4; 7.5) |
13.2 (11.4; 15.0) |
| Inversely loaded food groups (g/day) † | ||||||
| Rice | 141.1 (137.8; 144.5) |
244.8 (235.8; 253.8) |
149.0 (143.3; 154.7) |
126.2 (120.9; 131.4) |
114.1 (109.4; 118.8) |
88.5 (84.2; 92.8) |
| Beans | 188.1 (183.3; 192.9) |
415.1 (403.8; 426.4) |
220.1 (213.5; 226.6) |
152.4 (146.3; 158.5) |
113.6 (107.9; 119.3) |
76.3 (71.6; 81.1) |
| Vegetables | 48.1 (46.2; 50.0) |
75.5 (70.1; 80.9) |
57.0 (53.2; 60.8) |
47.8 (43.6; 52.0) |
38.1 (35.4; 40.8) |
27.8 (25.6; 30.0) |
| Water | 1231.8 (1205.4; 1258.2) |
1530.2 (1467.0; 1591.4) |
1334.8 (1279.9; 1389.7) |
1208.4 (1159.5; 1257.4) |
1124.4 (1082.5; 1166.3) |
1022.5 (980.4; 1064.6) |
| Fruits | 65.5 (62.5; 68.5) |
113.7 (104.3; 123.0) |
83.4 (77.0; 89.8) |
61.8 (56.7; 68.9) |
47.8 (43.4; 52.2) |
30.9 (27.6; 34.2) |
| Characteristics | All | Quintiles of the ED-LF dietary pattern | ||||
|---|---|---|---|---|---|---|
| Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | ||
| Sex | ||||||
| Female | 50.2 |
14.1 (13.3; 15.0) |
20.2 (19.2; 21.2) |
21.9 (20.8; 22.9) |
23.0 (21.9; 24.2) |
20.8 (19.6; 21.9) |
| Male | 49.8 |
22.4 (21.3; 23.5) |
18.3 (17.2; 19.4) |
17.0 (16.0; 18.1) |
17.3 (16.3; 18.4) |
25.0 (23.7; 26.3) |
| Age (years old) | ||||||
| 20–40 | 54.6 |
19.6 (18.5; 20.7) |
21.2 (20.1; 22.3) |
19.7 (18.6; 20.8) |
19.8 (18.7; 20.9) |
19.7 (18.5; 21.0) |
| >40–59 | 45.4 |
17.1 (16.1; 18.1) |
17.6 (16.6; 18.7) |
19.3 (18.1; 20.4) |
20.5 (19.4; 21.6) |
25.5 (24.1; 26.9) |
| Area of living | ||||||
| Urban | 86.3 |
16.2 (15.3; 17.1) |
18.7 (17.8; 19.6) |
19.8 (18.9; 20.7) |
20.9 (20.0; 21.8) |
24.4 (23.3; 25.6) |
| Rural | 13.7 |
31.1 (28.9; 33.2) |
22.7 (21.2; 24.2) |
17.5 (15.9; 19.1) |
15.7 (14.2; 17.1) |
13.1 (11.6; 14.7) |
| Monthly per capita family income † | ||||||
| <0.5 | 16.1 | 23.6 (21.7; 25.5) |
22.5 (20.7; 24.2) |
20.3 (18.5; 22.1) |
18.7 (17.1; 20.4) |
14.9 (13.2; 16.6) |
| 0.5–1.0 | 24.4 | 21.5 (20.0; 23.0) |
19.8 (18.5; 21.2) |
19.4 (18.0; 20.8) |
20.3 (18.9; 21.7) |
19.0 (17.3; 20.6) |
| 1.0–2.0 | 31.3 | 17.5 (16.2; 18.9) |
19.4 (18.1; 20.8) |
18.8 (17.6; 20.1) |
18.8 (17.5; 20.2) |
25.4 (23.3; 27.4) |
| >2.0 | 28.2 |
13.1 (11.8; 14.4) |
16.7 (15.1; 18.3) |
19.8 (17.9; 21.7) |
22.5 (20.8; 24.1) |
28.0 (25.9; 30.0) |
| Being on a diet | ||||||
| Yes | 13.1 | 18.2 (16.6; 19.9) |
23.6 (21.7; 25.5) |
23.6 (21.8; 25.5) |
20.1 (18.1; 22.1) |
14.4 (12.7; 16.1) |
| No | 86.9 | 18.2 (17.4; 19.1) |
18.6 (17.8; 19.4) |
18.8 (17.9; 19.7) |
20.2 (19.3; 21.1) |
24.1 (23.0; 25.3) |
| Away-from-home food consumption | ||||||
| Yes | 47.9 |
16.3 (15.3; 17.4) |
17.5 (16.4; 18.6) |
19.1 (18.1; 20.2) |
20.8 (19.7; 22.0) |
26.2 (24.9; 27.5) |
| No | 52.1 |
20.0 (18.9; 21.1) |
20.9 (19.8; 22.0) |
19.7 (18.5; 21.0) |
19.6 (18.5; 20.7) |
19.8 (18.4; 21.2) |
| Snacking habits | ||||||
| At least one snack per day | 85.7 | 18.0 (17.1; 18.8) |
19.0 (18.2; 19.8) |
19.2 (18.4; 20.1) |
20.3 (19.4; 21.1) |
23.5 (22.5; 24.6) |
| No snacks | 14.3 | 19.9 (17.6; 22.1) |
20.8 (18.4; 23.2) |
20.8 (18.7; 23.0) |
19.7 (17.4; 21.9) |
18.8 (15.9; 21.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
