Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Nanocellulose in Biotechnology and Medicine: Focus on Skin Tissue Engineering and Wound Healing

Version 1 : Received: 12 December 2018 / Approved: 14 December 2018 / Online: 14 December 2018 (06:44:53 CET)

A peer-reviewed article of this Preprint also exists.

Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019, 9, 164. Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019, 9, 164.

Abstract

Nanocellulose is cellulose in the form of nanostructures, i.e. features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, e.g. in bacterial cellulose; nanofibers, e.g. in electrospun matrices; nanowhiskers and nanocrystals. These structures can be further assembled into bigger 2D and 3D nano-, micro- and macro-structures, such as nanoplatelets, membranes, films, microparticles and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluonacetobacter), plants (trees, shrubs, herbs), algae (Cladophora) and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology and biomedical applications, e.g. for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.

Keywords

bacterial nanocellulose; nanofibrillated nanocellulose; animal nanocellulose; algal nanocellulose; tissue engineering; tissue repair; wound dressing; cell delivery; drug delivery; antimicrobial properties

Subject

Biology and Life Sciences, Biology and Biotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.