Preprint
Article

This version is not peer-reviewed.

Solar and Atmospheric Neutrino Mass Splitting with SMASH Model

Submitted:

29 November 2018

Posted:

03 December 2018

You are already at the latest version

Abstract
Five fundamental problems—neutrino mass, baryogenesis, dark matter, inflation, strong CP problem—are solved at one stroke in a model, dubbed as “SM-A-S-H” (Standard Model-Axion-Seesaw-Higgs portal inflation) by Andreas Ringwald et. al. The Standard Model (SM) particle content is extended by three right-handed SM-singlet neutrinos $N_i$, a vector-like color triplet quark $Q$, a complex SM-singlet scalar field $\sigma$ that stabilises the Higgs potential, all of them being charged under Peccei-Quinn (PQ) $U(1)$ symmetry, the vacuum expectation value $v_\sigma\sim10^{11}$ GeV breaks the lepton number and the Peccei-Quinn symmetry simultaneously. We found that numerically SMASH model not only solves five fundamental problems but also the sixth problem “Vacuum Metastability” through the extended scalar sector and can predict approximately correct atmospheric neutrino mass splitting around 0.05 eV and the solar neutrino mass splitting around 0.009 eV.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated