Simultaneous Occurrence of Bioactive Compounds (Melatonin, Protocatechuic Acid and Hydroxytyrosol) Increases Their Neuroprotective Effects Against Alpha-Synuclein-Induced Proteotoxicity
The abnormal assembly of α-synuclein (α-Syn) is an initial step in the formation of Lewy bodies in the brain, which finally causes the neuronal death, being considered as a pathological hallmark in Parkinson’s disease (PD). Certain food bioactives or their metabolites at very low concentrations can trespass the blood brain barrier (BBB) that might, thereafter, act simultaneously. The aim of this work was to evaluate the inhibitory and destabilising capacities on α-Syn kinetics and the neuroprotective effects of three well-known bioactive compounds able to cross the BBB and present in foods; melatonin (MEL), protocatechuic acid (PCA) and hydroxytyrosol (HT), and their combinations. For this purpose, different in vitro techniques (Thioflavin T (ThT), Transmission Electronic Microscopy (TEM), electrophoresis and MTT assay) were used. All tested compounds and their combinations were able to abolish the toxicity induced by α-Syn. In addition, the combination of PCA (100 µM) +HT (100 µM) showed the highest inhibitory effect against α-Syn fibril formation and destabilises α-Syn fibrils (88 and 62%, respectively). This is the first time that MEL, PCA and HT prove a joint effect against α-Syn aggregation and toxicity when they are tested together.
Keywords:
Subject: Biology and Life Sciences - Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.