Preprint Article Version 1 This version is not peer-reviewed

Fusion of Infrared Thermal Image and Visible Image for 3D Thermal Model Reconstruction Using Smartphone Sensors

Version 1 : Received: 15 May 2018 / Approved: 16 May 2018 / Online: 16 May 2018 (08:26:39 CEST)

A peer-reviewed article of this Preprint also exists.

Yang, M.-D.; Su, T.-C.; Lin, H.-Y. Fusion of Infrared Thermal Image and Visible Image for 3D Thermal Model Reconstruction Using Smartphone Sensors. Sensors 2018, 18, 2003. Yang, M.-D.; Su, T.-C.; Lin, H.-Y. Fusion of Infrared Thermal Image and Visible Image for 3D Thermal Model Reconstruction Using Smartphone Sensors. Sensors 2018, 18, 2003.

Journal reference: Sensors 2018, 18, 2003
DOI: 10.3390/s18072003

Abstract

Thermal infrared imagery provides temperature information on target objects, and has been widely applied in non-destructive testing. However, thermal infrared imagery is not always able to display detailed textures of inspected objects, which hampers the understanding of geometric entities consisting of temperature information. Although some commercial software has been developed for 3D thermal model displays, the software requires the use of expensive specific thermal infrared sensors. This study proposes a cost-effective method for 3D thermal model reconstruction based on image-based modeling. Two smart phones and a low-cost thermal infrared camera are employed to acquire visible images and thermal images, respectively, that are fused for 3D thermal model reconstruction. The experiment results demonstrate that the proposed method is able to effectively reconstruct a 3D thermal model which extremely approximates its corresponding entity. The total computation time for the 3D thermal model reconstruction is intensive while generating dense points required for the creation of a geometric entity. Future work will improve the efficiency of the proposed method in order to expand its potential applications to in-time monitoring.

Subject Areas

3D thermal model; image fusion; smart phone; thermal IR

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.