Preprint
Article

This version is not peer-reviewed.

Defect Depth Estimation in Infrared Thermography with Deep Learning

A peer-reviewed article of this preprint also exists.

Submitted:

16 March 2021

Posted:

22 March 2021

You are already at the latest version

Abstract
Infrared thermography has already been proven to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity, and low cost. However, the thorniest issue for the wider application of IRT is quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Units (GRU) in composite material samples via pulsed thermography (PT). Finite Element Method (FEM) modeling provides the economic examination of the response pulsed thermography. In this work, Carbon Fiber Reinforced Polymer (CFRP) specimens embedded with flat bottom holes are stimulated by a FEM modeling (COMSOL) with precisely controlled depth and geometrics of the defects. The GRU model automatically quantified the depth of defects presented in the stimulated CFRP material. The proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for defect depth predictions.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated