Preprint Article Version 1 This version is not peer-reviewed

In-situ Reactive Interfacial Compatibilization and Properties of Polylactide/Sisal Fiber Biocomposites via Melt-blending with Epoxy-functionalized Oligomer

Version 1 : Received: 2 February 2018 / Approved: 6 February 2018 / Online: 6 February 2018 (00:36:44 CET)

A peer-reviewed article of this Preprint also exists.

Hao, M.; Wu, H.; Qiu, F.; Wang, X. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer. Materials 2018, 11, 398. Hao, M.; Wu, H.; Qiu, F.; Wang, X. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer. Materials 2018, 11, 398.

Journal reference: Materials 2018, 11, 398
DOI: 10.3390/ma11030398

Abstract

To improve the interfacial bonding of sisal fiber reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with the addition of an epoxy-functionalized oligomer (ADR). The FTIR analysis and SEM characterization demonstrated that PLA molecular chain was bonded to the fiber surface and epoxy-functionalized oligomer played a hinge-like role between sisal fibers and PLA matrix, which resulted in improved interfacial adhesion between fibers and PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of ADR oligomer, which in turn reflected the improved interfacial interaction between SF and PLA matrix. These conclusions were further investigated by the calculated activation energies of glass transition relaxation (△Ea) of composites via dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened via addition of ADR oligomer. The interfacial interaction and structure-properties relationship of composites are key points of this study.

Subject Areas

polymer-matrix composites; natural fiber reinforcement; interface/interphase; microstructural analysis; crystallization behavior; rheological behavior

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.