Preprint Article Version 17 Preserved in Portico This version is not peer-reviewed

Atomic Structure and Binding of Carbon Atoms

Version 1 : Received: 5 January 2018 / Approved: 7 January 2018 / Online: 7 January 2018 (10:42:10 CET)
Version 2 : Received: 2 March 2018 / Approved: 2 March 2018 / Online: 2 March 2018 (14:37:34 CET)
Version 3 : Received: 14 April 2018 / Approved: 16 April 2018 / Online: 16 April 2018 (05:55:12 CEST)
Version 4 : Received: 8 July 2018 / Approved: 12 July 2018 / Online: 12 July 2018 (09:24:51 CEST)
Version 5 : Received: 29 July 2018 / Approved: 30 July 2018 / Online: 30 July 2018 (08:46:38 CEST)
Version 6 : Received: 25 September 2018 / Approved: 25 September 2018 / Online: 25 September 2018 (06:22:46 CEST)
Version 7 : Received: 14 December 2018 / Approved: 14 December 2018 / Online: 14 December 2018 (08:58:10 CET)
Version 8 : Received: 14 January 2019 / Approved: 15 January 2019 / Online: 15 January 2019 (07:01:56 CET)
Version 9 : Received: 16 May 2019 / Approved: 17 May 2019 / Online: 17 May 2019 (08:36:23 CEST)
Version 10 : Received: 2 June 2019 / Approved: 4 June 2019 / Online: 4 June 2019 (10:15:58 CEST)
Version 11 : Received: 14 January 2021 / Approved: 15 January 2021 / Online: 15 January 2021 (12:38:30 CET)
Version 12 : Received: 24 April 2022 / Approved: 25 April 2022 / Online: 25 April 2022 (06:14:04 CEST)
Version 13 : Received: 28 July 2022 / Approved: 29 July 2022 / Online: 29 July 2022 (02:57:38 CEST)
Version 14 : Received: 21 September 2022 / Approved: 22 September 2022 / Online: 22 September 2022 (07:21:18 CEST)
Version 15 : Received: 24 October 2022 / Approved: 24 October 2022 / Online: 24 October 2022 (04:52:17 CEST)
Version 16 : Received: 2 January 2023 / Approved: 3 January 2023 / Online: 3 January 2023 (08:35:12 CET)
Version 17 : Received: 21 August 2023 / Approved: 22 August 2023 / Online: 22 August 2023 (09:29:30 CEST)
Version 18 : Received: 9 March 2024 / Approved: 12 March 2024 / Online: 13 March 2024 (16:53:14 CET)

How to cite: Ali, M. Atomic Structure and Binding of Carbon Atoms. Preprints 2018, 2018010036. https://doi.org/10.20944/preprints201801.0036.v17 Ali, M. Atomic Structure and Binding of Carbon Atoms. Preprints 2018, 2018010036. https://doi.org/10.20944/preprints201801.0036.v17

Abstract

A carbon element exhibits complex behavior due to having several allotropic forms. Processing its precursors and compounds by different techniques and methods results in various carbon-based materials, which show a lot of uncertainties in their characterizations and analyses. Depending on the processing conditions of a carbon precursor, a carbon atom changes its state behavior. The conversion of the carbon atom from one state to another is due to the electron transfer mechanism. Bits of energy having shape-like dash transfer electrons to nearby unfilled states in conversion. The involved dash-shaped energy bit keeps partially conserved behavior. The forces exerted on the transferring electrons also keep partially conserved behavior. Under only attained dynamics of the carbon atoms, a two-dimensional or amorphous graphite structure forms. In the execution of electron dynamics, graphite, nanotube, and fullerene state atoms form one-dimensional, two-dimensional, and four-dimensional structures, respectively. In the depositing diamond atom, each outer ring electron undertakes the clamp of each energy knot belonging to the outer ring of the deposited diamond atom. As a result, binding in diamond state atoms is from east-west to south. So, growth in the diamond structure is from south to east-west. Lonsdaleite state atoms bind from the east-west to a bit south. In glassy carbon, the layers of gaseous, graphite, and lonsdaleite state atoms bind simultaneously. The order of the layers repeats in the growth of glassy carbon. Atoms in diamond, lonsdaleite, graphene and glassy carbon structures involve golf-stick-shaped energy bits. Processed carbon materials differently also study hardness under a new insight. This study discusses the fundamental and applied science of carbon atoms and their structures.

Keywords

Carbon; Atomic structure; Electron dynamics; Structure; Binding energy

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (1)

Comment 1
Received: 22 August 2023
Commenter: Mubarak Ali
Commenter's Conflict of Interests: Author
Comment: Language and presentation improved in this last and final version. 
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.