Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An Improved System for Utilizing Low-temperature Waste Heat of Flue Gas from Coal-Fired Power Plants

Version 1 : Received: 10 July 2017 / Approved: 12 July 2017 / Online: 12 July 2017 (15:18:32 CEST)

A peer-reviewed article of this Preprint also exists.

Huang, S.; Li, C.; Tan, T.; Fu, P.; Xu, G.; Yang, Y. An Improved System for Utilizing Low-Temperature Waste Heat of Flue Gas from Coal-Fired Power Plants. Entropy 2017, 19, 423. Huang, S.; Li, C.; Tan, T.; Fu, P.; Xu, G.; Yang, Y. An Improved System for Utilizing Low-Temperature Waste Heat of Flue Gas from Coal-Fired Power Plants. Entropy 2017, 19, 423.

Abstract

In this paper, an improved system to efficiently utilize the low-temperature waste heat (WHUS) from the flue gas of coal-fired power plants is proposed based on heat cascade. The essence of the proposed system is that the waste heat of exhausted flue gas is not only used to preheat air for assisting coal combustion as usual but also to heat up feedwater and the low-pressure steam extraction. Preheated by both the exhaust flue gas in the boiler island and the low-pressure steam extraction in the turbine island, thereby part of the flue gas heat in the air preheater can be saved and introduced to heat the feedwater and the high-temperature condensed water. Consequently, part of the high-pressure steam is saved for further expansion in the steam turbine, which obtains additional net power output. Based on the design data of a typical 1000 MW ultra-supercritical coal-fired power plant in China, in-depth analysis of the energy-saving characteristics of the optimized WHUS and the conventional WHUS is conducted. When the optimized WHUS is adopted in a typical 1000 MW unit, net power output increases by 19.51 MW, exergy efficiency improves to 45.46%, and net annual revenue reaches 4.741 million USD. In terms of the conventional WHUS, these aforementioned performance parameters are only 5.83 MW, 44.80% and 1.244 million USD, respectively. The research of this paper can provide a feasible energy-saving option for coal-fired power plants.

Keywords

coal-fired power plants; waste heat utilization; thermodynamic analysis; exergy analysis; techno-economic analysis

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.