Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Optimization of Ultrasonic-Assisted Extraction by Response Surface Methodology with Maximal Phenolic Yield and Antioxidant Activity from Acer truncatum Leaves

These authors equally made contributions to this article, and thus should be considered as co-first authors.
Version 1 : Received: 7 January 2017 / Approved: 9 January 2017 / Online: 9 January 2017 (04:16:01 CET)

A peer-reviewed article of this Preprint also exists.

Yang, L.; Yin, P.; Fan, H.; Xue, Q.; Li, K.; Li, X.; Sun, L.; Liu, Y. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity. Molecules 2017, 22, 232. Yang, L.; Yin, P.; Fan, H.; Xue, Q.; Li, K.; Li, X.; Sun, L.; Liu, Y. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity. Molecules 2017, 22, 232.

Abstract

This study was designed for the first time to improve phenolic yield and antioxidant activity of ultrasonic-assisted extraction from Acer truncatum leaves (ATL) using response surface methodology, and phenolic composition in ATL extracted under the optimized condition were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration (X1), material-to-liquid ratio (X2), ultrasonic temperature (X3) and power (X4) for an optimal total phenol yield (Y1) and DPPH• antioxidant activity (Y2). The results showed that the optimal combination was ethanol: water (v:v) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent /100 g d.w. and a maximal DPPH• antioxidant activity of 74241.61 μmol Trolox equivalent/100 g d.w.. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic composition in ATL. What’s more, a gallotannins pathway existing in ATL from gallic acid to penta-O-galloyl-glucoside was interpreted. All these results provided practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

Keywords

Acer truncatum leaves; ultrasonic-assisted extraction; response surface methodology; phenolics; antioxidant activity; UPLC-QTOF-MS/MS

Subject

Biology and Life Sciences, Plant Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.