Submitted:
12 February 2026
Posted:
13 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- 1.
- We investigate the effect of MIMO-DBS under interference for two cases: (a) a stationary scene, where only the platform equipped with HR is moving, and (b) a dynamic scene, where both the HR and the targets are in motion.
- 2.
- We characterise the operational boundaries of multi-modal beamforming in automotive and maritime conditions, including multi-interferer scenarios.
- 3.
- We present a quantitative analysis of signal-to-interference-plus-noise ratio (SINR) and interference-to-noise ratio (INR) at each stage of the radar processing chain, identify critical situations and parameters and assess their impact on radar functionality.
- 4.
- We validate the analysis using data collected during a series of automotive and maritime measurements.
2. Signal Processing Framework
2.1. Multi-Modal Processing for Echo Signal
2.1.1. Doppler Beam Sharpening
2.1.2. MIMO Beamforming
2.1.3. MIMO-DBS Beamforming
2.2. Multi-Modal Processing for Interference
2.2.1. DBS Processing
2.2.2. Interference Classes Based on Doppler Characteristics
- Periodic interference, which occurs at same fast-time of all VR chirps in a CPI.
- Semi-periodic interference, which occurs at different fast-time for a subset of chirps, after which the sequence repeats and becomes periodic over the CPI.
- Aperiodic interference, which occurs at different fast-time across all VR chirps in a CPI.
- 1.
- For synchronous and semi-synchronous cases, interference is focused at a Doppler bin.
- 2.
- For periodic and semi-periodic cases, due to different and , second term in (6) is non-zero, introducing a ‘quasi-periodic’ phase shift. This leads to interference spread across a few Doppler bins. For periodic case, number of Doppler bins affected by interference, , is equal to 2 in a real (single) channel receiver as interference folds over both positive and image side of spectrum [43]. in dual (in-phase/ quadrature (I/Q)) channel receiver. In semi-periodic case, is equal to the number of VR chirps over which interference sequence is aperiodic. In the discussed example, m = 4 (Table 1), leading to in I/Q channel receiver and in real-channel receiver.
- 3.
- For aperiodic case, interference energy spreads across the Doppler bins .
2.2.3. MIMO Beamforming
3. Signal Processing Gain
3.1. Receiver Input
3.2. Analogue Front End (AFE)
3.3. Digital Signal Processing
3.3.1. Range Compression
3.3.2. Range Doppler Compressions
- 1.
- If , none of the chirps within Doppler frame have interference (SINR = SNR).
- 2.
- If , , and all chirps within a Doppler frame have interference, resulting in maximum interference power.
3.3.3. Spatial Compression
3.3.4. MIMO-DBS Processing
4. Interference to Noise Ratio Heatmaps
4.1. Synchronous and Semi-Synchronous Interference
4.2. Asynchronous Interference
4.2.1. Periodic and Semi-Periodic Interference
4.2.2. Aperiodic Interference
4.3. Performance Analysis for Multiple Interferers
5. Experimental Setup and Analysis
5.1. Automotive Measurements:
5.2. Maritime Measurements:
5.3. Performance Analysis in a Dynamic Scenario
6. Conclusion
Funding
Acknowledgments
References
- Pirkani, A.; Kumar, D.; Reeves, N.; Cherniakov, M.; Gashinova, M. Multi-Modal Radar and LiDAR Mapping of Marine Infrastructure at Millimeter and Sub-THz Frequencies. 22nd European Radar Conference (EuRAD), Utrecht, Netherlands, 2025; pp. 87–90. [Google Scholar]
- Pirkani, A.; Stove, A. G.; Kumar, D.; Cherniakov, M.; Gashinova, M. S. 77 GHz FMCW Imaging Radar for Low Observable and Small Marine Target Detection in Dynamic Sea Conditions Based on Combined MIMO and DBS. IEEE TRS 2024, vol. 2, 517–534. [Google Scholar] [CrossRef]
- Pirkani, A. Doppler Beam Sharpening for MIMO and Real Aperture Radars at mm-wave and Sub-THz Maritime Sensing. 24th International Radar Symposium, May 2023; pp. 1–10. [Google Scholar]
- Waldschmidt, C.; Hasch, J.; Menzel, W. Automotive Radar—From First Efforts to Future Systems. IEEE Journal of Microwaves 2021, vol. 1(no. 1), 135–148. [Google Scholar] [CrossRef]
- Brooker, G. M. Mutual Interference of Millimeter-Wave Radar Systems. IEEE Transactions on Electromagnetic Compatibility 2007, vol. 49(no. 1), 170–181. [Google Scholar] [CrossRef]
- Norouzian, F.; Pirkani, A.; Hoare, E.; Cherniakov, M.; Gashinova, M. Phenomenology of automotive radar interference. IET RSN 2021, vol. 15(no. 9), 1045–1060. [Google Scholar] [CrossRef]
- Fan, Y.; Bao, J.; Wu, K.; Li, H. Ghost Image Due to mmWave Radar Interference: Experiment, Mitigation and Leverage. IEEE International Conference on Communications Workshops, Jun. 2020; pp. 1–6. [Google Scholar]
- Pirkani, A. High-Resolution Augmented Multimodal Sensing of Distributed Radar Network. IEEE Transactions on Radar Systems vol. 3, 905–918, 2025. [CrossRef]
- Pirkani, A.; Norouzian, F.; Cherniakov, M.; Gashinova, M. Adaptive Digital Beamforming for Radar Interference Mitigation. International Radar Symposium (IRS), Jul. 2024; pp. 12–17. [Google Scholar]
- Pirkani, A.; Norouzian, F.; Cherniakov, M.; Gashinova, M. Automotive Radar Parameter Estimation for Cognitive Interference Mitigation. In 19th EuRAD; Sep 2022; pp. 161–164. [Google Scholar]
- Barjenbruch, M.; Kellner, D.; Dietmayer, K.; Klappstein, J.; Dickmann, J. A method for interference cancellation in automotive radar. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Apr. 2015; pp. 1–4. [Google Scholar]
- Uysal, F.; Sanka, S. Mitigation of automotive radar interference. IEEE Radar Conference, Apr. 2018; pp. 0405–0410. [Google Scholar]
- Bechter, J.; Sippel, C.; Waldschmidt, C. Bats-inspired frequency hopping for mitigation of interference between automotive radars. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), May 2016; pp. 1–4. [Google Scholar]
- Tovar Torres, L. L.; Grebner, T.; Waldschmidt, C. Automotive Radar Interference Avoidance Strategies for Complex Traffic Scenarios. IEEE Radar Conference, May 2023; pp. 1–6. [Google Scholar]
- Norouzian, F.; Pirkani, A.; Hoare, E.; Cherniakov, M.; Gashinova, M. Automotive Radar Waveform Parameters Randomisation for Interference Level Reduction. IEEE Radar Conference, Sep. 2020; pp. 1–5. [Google Scholar]
- Lin, Y.-C.; Chung, W.-H.; Lee, T.-S.; Pan, Y.-H. Non-Cooperative Interference Avoidance in Automotive OFDM Radars. IEEE 89th Vehicular Technology Conference, Apr. 2019; pp. 1–5. [Google Scholar]
- Lin, Y.-C.; Lee, T.-S.; Lin, C.-H. Interference avoidance and cancellation in automotive OFDM radar networks. J. Signal Process. Syst. 2020, vol. 92(no. 12), 1383–1396. [Google Scholar] [CrossRef]
- Bechter, J.; Waldschmidt, C. Automotive radar interference mitigation by reconstruction and cancellation of interference component. IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Apr. 2015; pp. 1–4. [Google Scholar]
- Rameez, M.; Dahl, M.; Pettersson, M. I. Adaptive digital beamforming for interference suppression in automotive FMCW radars. IEEE Radar Conference, Apr. 2018; pp. 0252–0256. [Google Scholar]
- Bechter, J.; Rameez, M.; Waldschmidt, C. Analytical and Experimental Investigations on Mitigation of Interference in a DBF MIMO Radar. IEEE Transactions on Microwave Theory and Techniques 2017, vol. 65(no. 5), 1727–1734. [Google Scholar] [CrossRef]
- Pirkani, A.; Norouzian, F.; Hoare, E.; Chemiakov, M.; Gashinova, M. Automotive Interference Suppression in MIMO and Phased Array Radar. 18th EuRad, Apr. 2022; pp. 413–416. [Google Scholar]
- Wagner, M.; Sulejmani, F.; Melzer, A.; Meissner, P.; Huemer, M. Threshold-Free Interference Cancellation Method for Automotive FMCW Radar Systems. IEEE International Symposium on Circuits and Systems (ISCAS), May 2018; pp. 1–4. [Google Scholar]
- Bourdoux, A.; Parashar, K.; Bauduin, M. Phenomenology of mutual interference of FMCW and PMCW automotive radars. IEEE Radar Conference (RadarConf), May 2017; pp. 1709–1714. [Google Scholar]
- Mun, J.; Kim, H.; Lee, J. A Deep Learning Approach for Automotive Radar Interference Mitigation. IEEE 88th Vehicular Technology Conference (VTC-Fall), Aug. 2018; pp. 1–5. [Google Scholar]
- Rock, J.; Roth, W.; Toth, M.; Meissner, P.; Pernkopf, F. Resource-efficient Deep Neural Networks for Automotive Radar Interference Mitigation. IEEE J. Sel. Top. Signal Process. 2021, vol. 15(no. 4), 927–940. [Google Scholar] [CrossRef]
- Slavik, Z.; Mishra, K. V. Cognitive Interference Mitigation in Automotive Radars. IEEE Radar Conference, Apr. 2019; pp. 1–6. [Google Scholar]
- Ertan, A. E.; Anderson, K.; Ali, M. Cognitive Radar Approaches to Address Interference Mitigation in Mobility Applications. IEEE Radar Conference (RadarConf22), Mar. 2022; pp. 1–6. [Google Scholar]
- Xiao, Y.; Daniel, L.; Gashinova, M. Image Segmentation and Region Classification in Automotive High-Resolution Radar Imagery. IEEE Sensors Journal 2021, vol. 21(no. 5), 6698–6711. [Google Scholar] [CrossRef]
- Xiao, Y. Automotive radar image segmentation with frame fusion. International Conference on Radar Systems, Oct. 2022; pp. 243–247. [Google Scholar]
- Pirkani, A.; Stove, A.; Cherniakov, M.; Robertson, D.; Gashinova, M. Target Tracking in Maritime Environment using 77 GHz FMCW-MIMO-DBS Imaging Radar. International Radar Symposium (IRS), Jul. 2024; pp. 97–102. [Google Scholar]
- Sun, S.; Petropulu, A. P.; Poor, H. V. MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges. IEEE Signal Processing Magazine 2020, vol. 37(no. 4), 98–117. [Google Scholar] [CrossRef]
- Pirkani, A. A.; Pooni, S.; Cherniakov, M. Implementation of MIMO Beamforming on an OTS FMCW Automotive Radar. 20th International Radar Symposium (IRS), Jun. 2019; pp. 1–8. [Google Scholar]
- Daniel, L. Application of Doppler beam sharpening for azimuth refinement in prospective low-THz automotive radars. IET RSN 2018, vol. 12(no. 10), 1121–1130. [Google Scholar] [CrossRef]
- Cassidy, S. L.; Pooni, S.; Cherniakov, M.; Hoare, E. G.; Gashinova, M. S. High-Resolution Automotive Imaging Using MIMO Radar and Doppler Beam Sharpening. IEEE Transactions on Aerospace and Electronic Systems 2023, vol. 59(no. 2), 1495–1505. [Google Scholar] [CrossRef]
- Yuan, S.; Aubry, P.; Fioranelli, F.; Yarovoy, A. G. A Novel Approach to Unambiguous Doppler Beam Sharpening for Forward-Looking MIMO Radar. IEEE Sensors Journal 2022, vol. 22(no. 23), 23494–23506. [Google Scholar] [CrossRef]
- Yuan, S.; Fioranelli, F.; Yarovoy, A. G. 3DRUDAT: 3D Robust Unambiguous Doppler Beam Sharpening Using Adaptive Threshold for Forward-Looking Region. IEEE Transactions on Radar Systems 2024, vol. 2, 138–153. [Google Scholar] [CrossRef]
- Bekar, M.; Bekar, A.; Baker, C.; Gashinova, M. Improved Resolutions in Forward Looking MIMO-SAR through Burg Algorithm. 21st European Radar Conference, Sep. 2024; pp. 372–375. [Google Scholar]
- Pirkani, A.; Norouzian, F.; Hoare, E.; Cherniakov, M.; Gashinova, M. Automotive interference statistics and their effect on radar detector. IET RSN 2022, vol. 16(no. 1), 9–21. [Google Scholar] [CrossRef]
- Pirkani, A.; Norouzian, F.; Hoare, E.; Gashinova, M.; Cherniakov, M. Statistical Analysis of Automotive Radar Interference. IEEE Radar Conference (RadarConf20), Sep. 2020; pp. 1–6. [Google Scholar]
- Pirkani, A.; Norouzian, F.; Hoare, E.; Cherniakov, M.; Gashinova, M. Analysis of Automotive Radar Interference in Spatial Domain. 21st International Radar Symposium, Jun. 2021; pp. 1–8. [Google Scholar]
- INRAS Products—Radarbook. 28 May 2020. Available online: http://www.inras.at/en/.
- Kester, W. Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don’t Get Lost in the Noise Floor. Analog Devices Tutorial MT–003.
- Pirkani, A. Characterisation and Mitigation of Radar Interference in Automotive Applications. 2023. Available online: https://research.birmingham.ac.uk/en/publications/characterisation-and-mitigation-of-radar-interference-in-automoti/.
- Digham, F. F.; Alouini, M.-S.; Simon, M. K. On the Energy Detection of Unknown Signals Over Fading Channels. IEEE Transactions on Communications 2007, vol. 55(no. 1), 21–24. [Google Scholar] [CrossRef]
- Norouzian, F.; Pirkani, A.; Hoare, E.; Cherniakov, M.; Gashinova, M. A Graphical Heatmap Tool to Analyse the Effects of Interference in Automotive Radar. IEEE Radar Conference, Sep. 2020; pp. 1–6. [Google Scholar]
- Bechter, J.; Roos, F.; Rahman, M.; Waldschmidt, C. Automotive radar interference mitigation using a sparse sampling approach. European Radar Conference (EURAD), Oct. 2017; pp. 90–93. [Google Scholar]
- ASSURED CAV City—Proving Ground. 04 May 2022. Available online: https://www.vehicletesting.solutions/proving-ground-surfaces/city-circuit/.
- Pirkani, A.; Gashinova, M. COSMOS `Adaptive Cruise Control (ACC) dataset’ for co-existence/ interference analysis and simultaneous scene representation by automotive radar and video; University of Birmingham, 01 Mar 2022. [Google Scholar] [CrossRef]
- Pirkani, A. COSMOS dataset for co-existence/ interference analysis and simultaneous scene representation by automotive radar and video with GPS/IMU ground truth. In University of Birmingham; 19 Jan 2022. [Google Scholar] [CrossRef]
- Pirkani, A.; Cassidy, S.; Pooni, S.; Cherniakov, M.; Gashinova, M. Modelling and experimental validation of radar - environment interaction in automotive scenarios. in International Conference on Radar Systems (RADAR 2022), Oct. 2022; pp. 395–400. [Google Scholar]











| Interference Type | Condition and Parameters | |
|---|---|---|
| Synchronous | ||
| Semi-Synchronous | ||
|
Asynchronous |
Periodic (Fast-chirp sequence) | Periodic (Slow-chirp sequence) |
| Semi-Periodic | ||
| Aperiodic | ||
| Interferer No./ Type | Sweep Time (s) | Bandwidth (GHz) | Range, Angle |
|---|---|---|---|
| Int1/ Continuous wave | ∞ | 0.0 | 20 m, |
| Int2/ Fast-chirp periodic | 10 | 0.5 | 25 m, |
| Int3/ Aperiodic | 41.3 | 0.5 | 30 m, |
| Int4/ Slow-chirp periodic | 200 | 0.5 | 35 m, |
| Int5/ Semi-periodic | 800 | 0.2 | 40 m, |
| No. of Interferers | 1 (Int1) | 3 (Int1–Int3) | 5 (Int1–Int5) |
|---|---|---|---|
| INR (dB) | |||
| MIMO Beamforming | 62 | 65 | 66 |
| MIMO Beamforming + Zeroing | 12 | 20 | 28 |
| MIMO-DBS Beamforming | 37 | 34 | 31 |
| MIMO-DBS Beamforming + Zeroing | 1 | 8 | 11 |
| Parameter | Radarlog | TI | NXP |
|---|---|---|---|
| Sweep Time (µs) (Tsv) | 204.8 | 250 | 102.4 |
| Bandwidth (MHz) | 1000 | 950 | 1000 |
| Start Frequency (GHz) | 76 | 76.05 | 76.1 |
| Pulse repetition interval (µs) | 230 | 266 | 150 |
| Antenna Configuration | 4*16 | 1*4 | 1*4 |
| Gain at boresight (dBi) | 14.4 | 10 | 17 |
| Parameter | 77 GHz Radar |
|---|---|
| Centre frequency (GHz) | 77 |
| Bandwidth (GHz) | 2 |
| Operational configuration | TDM MIMO |
| Array configuration (Tx×Rx) | 4×16 (virtual 61 el) |
| Chirps per frame | 4 |
| Range resolution | 0.075 m |
| Azimuth resolution | 1.9° (virtual) |
| Coherent processing interval | 128 ms |
| Platform speed | 2.2 m/s |
| Unambiguous velocity | ±0.95 m/s |
| Velocity resolution | 0.015 m/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).