Submitted:
11 February 2026
Posted:
12 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Established Biomarkers in Sepsis
3. The Role of Monocytes in Infection and Sepsis
- Classical monocytes (CD14++ [high], CD16-, ~80-90% of monocytes),
- Intermediate monocytes (CD14++ CD16+, ~5-10%),
- Non-classical monocytes (CD14+ [low], CD16++, ~5-10%).
4. Monocyte Distribution Width (MDW)
5. Clinical Studies on the Role of MDW in Sepsis
5.1. MDW in Emergency Department Populations
5.2. MDW in Intensive Care Unit Patients
5.3. MDW in COVID-19
6. Clinical Significance and Applications
6.1. MDW for Early Detection of Sepsis
6.2. Prognostic Utility of MDW
6.3. Integration of MDW into Routine Clinical Practice
6.4. Combination of MDW with Other Clinical and Laboratory Indicators
7. Limitations and Challenges in the Clinical Use of MDW
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, J.C.; Leligdowicz, A. Gaps and opportunities in sepsis translational research. EBioMedicine 2022, 86, 104387. [Google Scholar] [CrossRef] [PubMed]
- Schottmüller, H. Über septische Allgemeininfektionen. In Handbuch der pathogenen Mikroorganismen; Kolle, W., Wassermann, A., Eds.; G. Fischer: Jena, 1914. [Google Scholar]
- Bone, R.C.; Sprung, C.L.; Sibbald, W.J. Definitions for sepsis and organ failure. Critical care medicine 1992, 20, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive care medicine 2003, 29, 530–538. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock - Basics of diagnosis, pathophysiology and clinical decision making. The Medical clinics of North America 2020, 104, 573–585. [Google Scholar] [CrossRef]
- Grande, E.; Grippo, F.; Frova, L.; Pantosti, A.; Pezzotti, P.; Fedeli, U. The increase of sepsis-related mortality in Italy: a nationwide study, 2003-2015. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology 2019, 38, 1701–1708. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. The New England journal of medicine 2013, 369, 2063. [Google Scholar] [CrossRef]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. Jama 2017, 318, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Klompas, M. What Is the National Burden of Sepsis in U.S. Emergency Departments? It Depends on the Definition. Critical care medicine 2017, 45, 1569–1571. [Google Scholar] [CrossRef]
- Dombrovskiy, V.Y.; Martin, A.A.; Sunderram, J.; Paz, H.L. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Critical care medicine 2007, 35, 1244–1250. [Google Scholar] [CrossRef]
- Dombrovskiy, V.Y.; Martin, A.A.; Sunderram, J.; Paz, H.L. Occurrence and outcomes of sepsis: influence of race. Critical care medicine 2007, 35, 763–768. [Google Scholar] [CrossRef]
- Danai, P.A.; Sinha, S.; Moss, M.; Haber, M.J.; Martin, G.S. Seasonal variation in the epidemiology of sepsis. Critical care medicine 2007, 35, 410–415. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Moss, M. The effect of age on the development and outcome of adult sepsis. Critical care medicine 2006, 34, 15–21. [Google Scholar] [CrossRef]
- Mayr, F.B.; Yende, S.; Angus, D.C. Epidemiology of severe sepsis. Virulence 2014, 5, 4–11. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. The New England journal of medicine 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Finfer, S.; Machado, F.R. The Global Epidemiology of Sepsis. Does It Matter That We Know So Little? American journal of respiratory and critical care medicine 2016, 193, 228–230. [Google Scholar] [CrossRef]
- WHO. Global report on the epidemiology and burden of sepsis; WHO, 2020. [Google Scholar]
- Shankar-Hari, M.; Ambler, M.; Mahalingasivam, V.; Jones, A.; Rowan, K.; Rubenfeld, G.D. Evidence for a causal link between sepsis and long-term mortality: a systematic review of epidemiologic studies. Critical care 2016, 20, 101. [Google Scholar] [CrossRef]
- WHO. Improving the prevention, diagnosis and clinical management of sepsis; 2017. [Google Scholar]
- Phua, J.; Ngerng, W.; See, K.; Tay, C.; Kiong, T.; Lim, H.; Chew, M.; Yip, H.; Tan, A.; Khalizah, H.; et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Critical care 2013, 17, R202. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. American journal of respiratory and critical care medicine 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Prescott, H.C.; Angus, D.C. Enhancing Recovery From Sepsis: A Review. Jama 2018, 319, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Prescott, H.C.; Angus, D.C. Postsepsis Morbidity. Jama 2018, 319, 91. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. The New England journal of medicine 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kahn, J.M.; Martin-Gill, C.; Callaway, C.W.; Yealy, D.M.; Scales, D.; Angus, D.C. Delays From First Medical Contact to Antibiotic Administration for Sepsis. Critical care medicine 2017, 45, 759–765. [Google Scholar] [CrossRef]
- McGinley, A.; Pearse, R.M. A national early warning score for acutely ill patients. Bmj 2012, 345, e5310. [Google Scholar] [CrossRef]
- Bayer, O.; Schwarzkopf, D.; Stumme, C.; Stacke, A.; Hartog, C.S.; Hohenstein, C.; Kabisch, B.; Reichel, J.; Reinhart, K.; Winning, J. An Early Warning Scoring System to Identify Septic Patients in the Prehospital Setting: The PRESEP Score. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine 2015, 22, 868–871. [Google Scholar] [CrossRef]
- Vincent, J.L.; Martin, G.S.; Levy, M.M. qSOFA does not replace SIRS in the definition of sepsis. Critical care 2016, 20, 210. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive care medicine 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Hautmann, O.; Kofink, D.; Abdul Khalil, A.; Zainal Abidin, I.; Loch, A. The SPEED (sepsis patient evaluation in the emergency department) score: a risk stratification and outcome prediction tool. European journal of emergency medicine: official journal of the European Society for Emergency Medicine 2017, 24, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, N.I.; Wolfe, R.E.; Moore, R.B.; Smith, E.; Burdick, E.; Bates, D.W. Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule. Critical care medicine 2003, 31, 670–675. [Google Scholar] [CrossRef]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. Quick Sepsis-related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit. American journal of respiratory and critical care medicine 2017, 195, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G. Sepsis biomarkers: past, present and future. Clinical chemistry and laboratory medicine 2019, 57, 1281–1283. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology and therapeutics 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Pierrakos, C.; Vincent, J.L. Sepsis biomarkers: a review. Critical care 2010, 14, R15. [Google Scholar] [CrossRef]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. The Lancet. Infectious diseases 2013, 13, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Kong, L.; Fink, M.P.; Weissfeld, L.A.; Yealy, D.M.; Pinsky, M.R.; Fine, J.; Krichevsky, A.; Delude, R.L.; Angus, D.C.; et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Archives of internal medicine 2007, 167, 1655–1663. [Google Scholar] [CrossRef]
- Jin, X.; Shen, H.; Zhou, P.; Yang, J.; Yang, S.; Ni, H.; Yu, Y.; Zhang, Z. Research Progress on Sepsis Diagnosis and Monitoring Based on Omics Technologies: A Review. Diagnostics 2025, 15. [Google Scholar] [CrossRef]
- Tauseef, A.; Zafar, M.; Arshad, W.; Thirumalareddy, J.; Sood, A.; Farooque, U.; Nair, S.; Mirza, M. Role of immature platelet fraction (IPF) in sepsis patients: A systematic review. Journal of family medicine and primary care 2021, 10, 2148–2152. [Google Scholar] [CrossRef]
- Agnello, L.; Bivona, G.; Vidali, M.; Scazzone, C.; Giglio, R.V.; Iacolino, G.; Iacona, A.; Mancuso, S.; Ciaccio, A.M.; Lo Sasso, B.; et al. Monocyte distribution width (MDW) as a screening tool for sepsis in the Emergency Department. Clinical chemistry and laboratory medicine 2020, 58, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Lo Sasso, B.; Bivona, G.; Gambino, C.M.; Giglio, R.V.; Iacolino, G.; Iacona, A.; Mancuso, S.; Ciaccio, A.M.; Vidali, M.; et al. Reference interval of monocyte distribution width (MDW) in healthy blood donors. Clinica chimica acta; international journal of clinical chemistry 2020, 510, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Hausfater, P.; Robert Boter, N.; Morales Indiano, C.; Cancella de Abreu, M.; Marin, A.M.; Pernet, J.; Quesada, D.; Castro, I.; Careaga, D.; Arock, M.; et al. Monocyte distribution width (MDW) performance as an early sepsis indicator in the emergency department: comparison with CRP and procalcitonin in a multicenter international European prospective study. Critical care 2021, 25, 227. [Google Scholar] [CrossRef]
- Agnello, L.; Iacona, A.; Lo Sasso, B.; Scazzone, C.; Pantuso, M.; Giglio, R.V.; Gambino, C.M.; Ciaccio, A.M.; Bivona, G.; Vidali, M.; et al. A new tool for sepsis screening in the Emergency Department. Clinical chemistry and laboratory medicine 2021, 59, 1600–1605. [Google Scholar] [CrossRef]
- Agnello, L.; Lo Sasso, B.; Vidali, M.; Scazzone, C.; Gambino, C.M.; Giglio, R.V.; Ciaccio, A.M.; Bivona, G.; Ciaccio, M. Validation of monocyte distribution width decisional cutoff for sepsis detection in the acute setting. International journal of laboratory hematology 2021, 43, O183–O185. [Google Scholar] [CrossRef]
- Agnello, L.; Sasso, B.L.; Giglio, R.V.; Bivona, G.; Gambino, C.M.; Cortegiani, A.; Ciaccio, A.M.; Vidali, M.; Ciaccio, M. Monocyte distribution width as a biomarker of sepsis in the intensive care unit: A pilot study. Annals of clinical biochemistry 2021, 58, 70–73. [Google Scholar] [CrossRef]
- Agnello, L.; Vidali, M.; Lo Sasso, B.; Giglio, R.V.; Gambino, C.M.; Scazzone, C.; Ciaccio, A.M.; Bivona, G.; Ciaccio, M. Monocyte distribution width (MDW) as a screening tool for early detecting sepsis: a systematic review and meta-analysis. Clinical chemistry and laboratory medicine 2022, 60, 786–792. [Google Scholar] [CrossRef]
- Clapp, B.R.; Hirschfield, G.M.; Storry, C.; Gallimore, J.R.; Stidwill, R.P.; Singer, M.; Deanfield, J.E.; MacAllister, R.J.; Pepys, M.B.; Vallance, P.; et al. Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability. Circulation 2005, 111, 1530–1536. [Google Scholar] [CrossRef]
- Thompson, S. Nursing care of a patient with fever due to sepsis/SIRS. Nursing in critical care 1999, 4, 63–66. [Google Scholar] [PubMed]
- Povoa, P.; Almeida, E.; Moreira, P.; Fernandes, A.; Mealha, R.; Aragao, A.; Sabino, H. C-reactive protein as an indicator of sepsis. Intensive care medicine 1998, 24, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.F.; de Paula, A.; Hasparyk, U.G.; de Oliveira Rabelo Bassalo Coutinho, M.; Alderete, J.R.A.; Kanjongo, J.C.; Silva, R.A.M.; Guimaraes, N.S.; Simoes, E.S.A.C.; Nobre, V. Use of C-reactive protein to guide the antibiotic therapy in hospitalized patients: a systematic review and meta-analysis. BMC infectious diseases 2023, 23, 276. [Google Scholar] [CrossRef]
- Muller, B.; White, J.C.; Nylen, E.S.; Snider, R.H.; Becker, K.L.; Habener, J.F. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. The Journal of clinical endocrinology and metabolism 2001, 86, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Assicot, M.; Gendrel, D.; Carsin, H.; Raymond, J.; Guilbaud, J.; Bohuon, C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993, 341, 515–518. [Google Scholar] [CrossRef]
- Mirmotahari, S.A.; Maghsoudi, A.S.; Amini, M.; Safari, M.; Akrami, M.; Mirnezami, S.I.; Najafi, A.; Kianpour, P.; Mojtahedzadeh, M.; Hassani, S. Sepsis diagnosis and monitoring: Frontiers in innovative technology. Clinica chimica acta; international journal of clinical chemistry 2026, 579, 120640. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology 2014, 6, a016295. [Google Scholar] [CrossRef]
- Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine & growth factor reviews 2020, 53, 13–24. [Google Scholar] [CrossRef]
- Thijs, L.G.; Hack, C.E. Time course of cytokine levels in sepsis. Intensive care medicine 1995, 21, S258–S263. [Google Scholar] [CrossRef] [PubMed]
- Tsalik, E.L.; Jaggers, L.B.; Glickman, S.W.; Langley, R.J.; van Velkinburgh, J.C.; Park, L.P.; Fowler, V.G.; Cairns, C.B.; Kingsmore, S.F.; Woods, C.W. Discriminative value of inflammatory biomarkers for suspected sepsis. The Journal of emergency medicine 2012, 43, 97–106. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Schuetz, P.; Albrich, W.; Mueller, B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC medicine 2011, 9, 107. [Google Scholar] [CrossRef]
- Schuetz, P.; Bolliger, R.; Merker, M.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Luyt, C.E.; Wolff, M.; Schroeder, S.; Nobre, V.; et al. Procalcitonin-guided antibiotic therapy algorithms for different types of acute respiratory infections based on previous trials. Expert review of anti-infective therapy 2018, 16, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Gager, G.M.; Biesinger, B.; Hofer, F.; Winter, M.P.; Hengstenberg, C.; Jilma, B.; Eyileten, C.; Postula, M.; Lang, I.M.; Siller-Matula, J.M. Interleukin-6 level is a powerful predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. Vascular pharmacology 2020, 135, 106806. [Google Scholar] [CrossRef]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nature reviews. Immunology 2011, 11, 762–774. [Google Scholar] [CrossRef]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nature reviews. Immunology 2005, 5, 953–964. [Google Scholar] [CrossRef]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef] [PubMed]
- Polilli, E.; Frattari, A.; Esposito, J.E.; Stanziale, A.; Giurdanella, G.; Di Iorio, G.; Carinci, F.; Parruti, G. Monocyte distribution width (MDW) as a new tool for the prediction of sepsis in critically ill patients: a preliminary investigation in an intensive care unit. BMC emergency medicine 2021, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Polilli, E.; Sozio, F.; Frattari, A.; Persichitti, L.; Sensi, M.; Posata, R.; Di Gregorio, M.; Sciacca, A.; Flacco, M.E.; Manzoli, L.; et al. Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for early recognition of sepsis. PloS one 2020, 15, e0227300. [Google Scholar] [CrossRef] [PubMed]
- Fingerle, G.; Pforte, A.; Passlick, B.; Blumenstein, M.; Strobel, M.; Ziegler-Heitbrock, H.W. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 1993, 82, 3170–3176. [Google Scholar] [CrossRef]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. The Journal of experimental medicine 2017, 214, 1913–1923. [Google Scholar] [CrossRef]
- Coillard, A.; Segura, E. In vivo Differentiation of Human Monocytes. Frontiers in immunology 2019, 10, 1907. [Google Scholar] [CrossRef]
- Wong, K.L.; Yeap, W.H.; Tai, J.J.; Ong, S.M.; Dang, T.M.; Wong, S.C. The three human monocyte subsets: implications for health and disease. Immunologic research 2012, 53, 41–57. [Google Scholar] [CrossRef]
- Hortova-Kohoutkova, M.; Laznickova, P.; Bendickova, K.; De Zuani, M.; Andrejcinova, I.; Tomaskova, V.; Suk, P.; Sramek, V.; Helan, M.; Fric, J. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. Journal of cellular and molecular medicine 2020, 24, 12504–12512. [Google Scholar] [CrossRef]
- Ferreira da Mota, N.V.; Brunialti, M.K.C.; Santos, S.S.; Machado, F.R.; Assuncao, M.; Azevedo, L.C.P.; Salomao, R. Immunophenotyping of Monocytes During Human Sepsis Shows Impairment in Antigen Presentation: A Shift Toward Nonclassical Differentiation and Upregulation of FCgammaRi-Receptor. Shock 2018, 50, 293–300. [Google Scholar] [CrossRef]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Llitjos, J.F.; Bounab, Y.; Rousseau, C.; Dixneuf, S.; Rimbault, B.; Chiche, J.D.; Textoris, J.; Pene, F.; Vedrine, C. Assessing the Functional Heterogeneity of Monocytes in Human Septic Shock: a Proof-of-Concept Microfluidic Assay of TNFalpha Secretion. Frontiers in immunology 2021, 12, 686111. [Google Scholar] [CrossRef] [PubMed]
- Italiani, P.; Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in immunology 2014, 5, 514. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nature reviews. Disease primers 2016, 2, 16045. [Google Scholar] [CrossRef]
- Crouser, E.D.; Parrillo, J.E.; Martin, G.S.; Huang, D.T.; Hausfater, P.; Grigorov, I.; Careaga, D.; Osborn, T.; Hasan, M.; Tejidor, L. Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA. Journal of intensive care 2020, 8, 33. [Google Scholar] [CrossRef]
- Meraj, F.; Shaikh, S.; Maqsood, S.; Kanani, F.; Khan, H.; Jamal, S. Monocyte Distribution Width, a Novel Biomarker for Early Sepsis Screening and Comparison with Procalcitonin and C-Reactive Protein. Journal of laboratory physicians 2023, 15, 294–299. [Google Scholar] [CrossRef]
- Theodoridis, D.; Tsifi, A.; Magiorkinis, E.; Ioannis, R.; Ioannis, V.; Moustaferi, E.; Christos, K.; Ekaterini, T.; Ioannidis, A.; Chronopoulos, E.; et al. Monocyte Distribution Width (MDW) as a useful and cost-effective biomarker for sepsis prediction. Journal of circulating biomarkers 2025, 14, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, D.; Tsifi, A.; Magiorkinis, E.; Tsamakidis, X.; Voulgaridis, A.; Moustaferi, E.; Skrepetou, N.; Tsifis, S.; Ioannidis, A.; Chronopoulos, E.; et al. The Role of Monocyte Distribution Width (MDW) in the Prediction of Death in Adult Patients with Sepsis. Microorganisms 2025, 13. [Google Scholar] [CrossRef]
- Food and Drug Administration. 510(k) substantial equivalence determination for UniCel DxH 800/900 Coulter Cellular Analysis System with Early Sepsis Indicator (ESId), K181599; Food and Drug Administration: Silver Spring (MD), 2019. [Google Scholar]
- Beckman Coulter Inc:. Beckman Coulter Early Sepsis Indicator (ESId) - U.S. 510(k)-cleared hematologic parameter for early sepsis screening. Company technical and regulatory documentation; Beckman Coulter Inc., 2019. [Google Scholar]
- Eisinger, G.J.; Hosler, Q.; Crouser, E.D.; Herman, D.D. Diagnostic Performance of Monocyte Distribution Width for the Detection of Sepsis: A Systematic Review and Meta-Analysis. Journal of the American College of Emergency Physicians open 2025, 6, 100073. [Google Scholar] [CrossRef]
- Poz, D.; Crobu, D.; Sukhacheva, E.; Rocchi, M.B.L.; Anelli, M.C.; Curcio, F. Monocyte distribution width (MDW): a useful biomarker to improve sepsis management in Emergency Department. Clinical chemistry and laboratory medicine 2022, 60, 433–440. [Google Scholar] [CrossRef]
- Motawea, K.R.; S, S.R.; Elsayed Talat, N.; R, H.E.; Mohammed Reyad, S.; Chebl, P.; Swed, S.; Sawaf, B.; Hadeel Alfar, H.; Farwati, A.; et al. Comparison of monocyte distribution width and Procalcitonin as diagnostic markers for sepsis: Meta-analysis of diagnostic test accuracy studies. PloS one 2023, 18, e0288203. [Google Scholar] [CrossRef]
- Morales Indiano, C.; Herraiz Ruiz, A.; Marcos Neira, P.; Roig Pineda, R.; Catalan Eraso, B.; Martinez Iribarren, A.; Leis Sestayo, A.; Armestar Rodriguez, F. Usefulness of monocyte distribution width in the diagnosis of sepsis in critically ill patients. Revista clinica espanola 2025, 225, 502357. [Google Scholar] [CrossRef]
- Riva, G.; Castellano, S.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A.; Lusenti, B.; Milic, J.; De Biasi, S.; Gibellini, L.; et al. Monocyte Distribution Width (MDW) as novel inflammatory marker with prognostic significance in COVID-19 patients. Scientific reports 2021, 11, 12716. [Google Scholar] [CrossRef]
- Agnello, L.; Ciaccio, A.M.; Vidali, M.; Cortegiani, A.; Biundo, G.; Gambino, C.M.; Scazzone, C.; Lo Sasso, B.; Ciaccio, M. Monocyte distribution width (MDW) in sepsis. Clinica chimica acta; international journal of clinical chemistry 2023, 548, 117511. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Park, J.; Lim, H.J.; Kwon, Y.J.; Choi, H.W.; Kee, S.J.; Kim, S.H.; Shin, M.G.; Nah, E.H.; Shin, J.H. Diagnostic Utility of Monocyte Distribution Width for Early Sepsis Detection in Cancer-Enriched Emergency Cohort. Journal of clinical medicine 2025, 14. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.E.; D’Amato, M.; Parruti, G.; Polilli, E. Monocyte Distribution Width for Sepsis Diagnosis in the Emergency Department and Intensive Care Unit: A Systematic Review and Meta-Analysis. International journal of molecular sciences 2025, 26. [Google Scholar] [CrossRef]
- Crouser, E.D.; Parrillo, J.E.; Seymour, C.W.; Angus, D.C.; Bicking, K.; Esguerra, V.G.; Peck-Palmer, O.M.; Magari, R.T.; Julian, M.W.; Kleven, J.M.; et al. Monocyte Distribution Width: A Novel Indicator of Sepsis-2 and Sepsis-3 in High-Risk Emergency Department Patients. Critical care medicine 2019, 47, 1018–1025. [Google Scholar] [CrossRef]
- Lin, S.F.; Lin, H.A.; Pan, Y.H.; Hou, S.K. A novel scoring system combining Modified Early Warning Score with biomarkers of monocyte distribution width, white blood cell counts, and neutrophil-to-lymphocyte ratio to improve early sepsis prediction in older adults. Clinical chemistry and laboratory medicine 2023, 61, 162–172. [Google Scholar] [CrossRef]
- Hou, S.K.; Lin, H.A.; Chen, S.C.; Lin, C.F.; Lin, S.F. Monocyte Distribution Width, Neutrophil-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio Improves Early Prediction for Sepsis at the Emergency. Journal of personalized medicine 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Polilli, E.; Di Iorio, G.; Silveri, C.; Angelini, G.; Anelli, M.C.; Esposito, J.E.; D’Amato, M.; Parruti, G.; Carinci, F. Monocyte Distribution Width as a predictor of community acquired sepsis in patients prospectively enrolled at the Emergency Department. BMC infectious diseases 2022, 22, 849. [Google Scholar] [CrossRef]
- Kralovcova, M.; Muller, J.; Hajsmanova, Z.; Sigutova, P.; Bultasova, L.; Palatova, J.; Matejovic, M. Understanding the value of monocyte distribution width (MDW) in acutely ill medical patients presenting to the emergency department: a prospective single center evaluation. Scientific reports 2024, 14, 15255. [Google Scholar] [CrossRef] [PubMed]
- Piva, E.; Zuin, J.; Pelloso, M.; Tosato, F.; Fogar, P.; Plebani, M. Monocyte distribution width (MDW) parameter as a sepsis indicator in intensive care units. Clinical chemistry and laboratory medicine 2021, 59, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Frugoli, A.; Ong, J.; Meyer, B.; Khiatah, B.; Bernstein, R.; Hernandez, A.; Diaz, G. Monocyte Distribution Width Predicts Sepsis, Respiratory Failure, and Death in COVID-19. Cureus 2023, 15, e50525. [Google Scholar] [CrossRef]
- Sharma, P.; Naseem, S.; Varma, N.; Khaire, N.; Jindal, N.; Sharma, A.; Verma, B.; Malhotra, P.; Bastian, S.; Sukhacheva, E. Monocyte Distribution Width (MDW) in Patients with COVID-19: An Indicator of Disease Severity. Indian journal of hematology & blood transfusion: an official journal of Indian Society of Hematology and Blood Transfusion 2023, 40, 1–5. [Google Scholar] [CrossRef]
- Cusinato, M.; Hadcocks, L.; Yona, S.; Planche, T.; Macallan, D. Increased monocyte distribution width in COVID-19 and sepsis arises from a complex interplay of altered monocyte cellular size and subset frequency. International journal of laboratory hematology 2022, 44, 1029–1039. [Google Scholar] [CrossRef]
- Marcos-Morales, A.; Barea-Mendoza, J.A.; Garcia-Fuentes, C.; Cueto-Felgueroso, C.; Lopez-Jimenez, A.; Martin-Loeches, I.; Chico-Fernandez, M. Elevated monocyte distribution width in trauma: An early cellular biomarker of organ dysfunction. Injury 2022, 53, 959–965. [Google Scholar] [CrossRef]
- Leijte, G.P.; Rimmele, T.; Kox, M.; Bruse, N.; Monard, C.; Gossez, M.; Monneret, G.; Pickkers, P.; Venet, F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Critical care 2020, 24, 110. [Google Scholar] [CrossRef]
- Quirant-Sanchez, B.; Plans-Galvan, O.; Lucas, E.; Argudo, E.; Martinez-Caceres, E.M.; Armestar, F. HLA-DR Expression on Monocytes and Sepsis Index Are Useful in Predicting Sepsis. Biomedicines 2023, 11. [Google Scholar] [CrossRef]
- Winkler, M.S.; Rissiek, A.; Priefler, M.; Schwedhelm, E.; Robbe, L.; Bauer, A.; Zahrte, C.; Zoellner, C.; Kluge, S.; Nierhaus, A. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: A diagnostic tool for immunosuppression? PloS one 2017, 12, e0182427. [Google Scholar] [CrossRef]
- Woo, A.; Oh, D.K.; Park, C.J.; Hong, S.B. Monocyte distribution width compared with C-reactive protein and procalcitonin for early sepsis detection in the emergency department. PloS one 2021, 16, e0250101. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Luo, J. Diagnostic and Prognostic Value of Monocyte Distribution Width in Sepsis. Journal of inflammation research 2022, 15, 4107–4117. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D.; Parrillo, J.E.; Seymour, C.; Angus, D.C.; Bicking, K.; Tejidor, L.; Magari, R.; Careaga, D.; Williams, J.; Closser, D.R.; et al. Improved Early Detection of Sepsis in the ED With a Novel Monocyte Distribution Width Biomarker. Chest 2017, 152, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Malinovska, A.; Hinson, J.S.; Badaki-Makun, O.; Hernried, B.; Smith, A.; Debraine, A.; Toerper, M.; Rothman, R.E.; Kickler, T.; Levin, S. Monocyte distribution width as part of a broad pragmatic sepsis screen in the emergency department. Journal of the American College of Emergency Physicians open 2022, 3, e12679. [Google Scholar] [CrossRef] [PubMed]
- Ciaccio, A.M.; Agnello, L.; Sasso, B.L.; Giglio, R.V.; Iacona, A.; Gambino, C.M.; Scazzone, C.; Tuttolomondo, A.; Ciaccio, M. Monocyte Distribution Width (MDW) as a biomarker of sepsis: An evidenced-based laboratory medicine approach. Clinica chimica acta; international journal of clinical chemistry 2023, 540, 117214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
