Submitted:
10 February 2026
Posted:
11 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample and Study Description
2.2. Experimental Design and Control Experiments
2.3. Measurement Procedures and Quality Control
2.4. Data Processing and Model Formulation
2.5. Evaluation Protocol and Statistical Analysis
3. Results and Discussion
3.1. Denoising Accuracy and Frequency Behavior
3.2. Visual Evaluation in Texture-Rich Regions
3.3. Relation to Existing Denoising Studies
3.4. Limitations and Practical Implications
4. Conclusions
References
- Ye, M.; Liu, W.; Yan, L.; Cheng, S.; Li, X.; Qiao, S. 3D-printed Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis. Molecular Medicine Reports 2021, 23, 410. [Google Scholar] [CrossRef]
- Younesi, A.; Ansari, M.; Fazli, M.; Ejlali, A.; Shafique, M.; Henkel, J. A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends. IEEE Access 2024, 12, 41180–41218. [Google Scholar] [CrossRef]
- Pereira, G. A.; Hussain, M. A review of transformer-based models for computer vision tasks: Capturing global context and spatial relationships. arXiv 2024, arXiv:2408.15178. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, S.; Ding, W. CTLformer: A Hybrid Denoising Model Combining Convolutional Layers and Self-Attention for Enhanced CT Image Reconstruction. arXiv 2025, arXiv:2505.12203. [Google Scholar] [CrossRef]
- Dietrich, C. F.; Wüstner, M.; Jenssen, C.; Merkel, D.; Bleck, J. S. Daylight Sonography: Clinical Relevance of Color-Tinted Ultrasound Imaging. Life 2025, 15, 1672. [Google Scholar] [CrossRef]
- Abdullah, R. Y.; Venkatesan, C.; Naresh, E.; Kumar, B. P. AI driven hybrid convolutional and transformer based deep learning architecture for precise lung nodule classification. Scientific Reports 2026. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, W.; Ye, M. Association between carbohydrate-to-fiber ratio and the risk of periodontitis. Journal of Dental Sciences 2024, 19, 246–253. [Google Scholar] [CrossRef]
- Joseph, N. T.; Kumar, S. N.; Sobhana, N. V.; Suriyan, K. U-Net Inspired GAN for the Enhancement of Underwater Images. Marine Geodesy 2025, 1–30. [Google Scholar] [CrossRef]
- Bornet, P. A.; Villani, N.; Gillet, R.; Germain, E.; Lombard, C.; Blum, A.; Gondim Teixeira, P. A. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. European Radiology 2022, 32, 3161–3172. [Google Scholar] [CrossRef]
- Gui, H.; Zong, W.; Fu, Y.; Wang, Z. Residual Unbalance Moment Suppression and Vibration Performance Improvement of Rotating Structures Based on Medical Devices. 2025. [Google Scholar] [PubMed]
- Sreevallabh Chivukula, A.; Yang, X.; Liu, B.; Liu, W.; Zhou, W. Adversarial Defense Mechanisms for Supervised Learning. In Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence; Springer International Publishing: Cham, 2022; pp. 151–238. [Google Scholar]
- Kaur, A.; Dong, G. A complete review on image denoising techniques for medical images. Neural Processing Letters 2023, 55, 7807–7850. [Google Scholar] [CrossRef]
- Sheremet, O. I.; Sadovoi, O. V.; Sheremet, K. S.; Sokhina, Y. V. Using deep neural networks for image denoising in hardware-limited environments. Herald of Advanced Information Technology 2025, 8, 43–53. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, J.; Yao, Y. Identifying and optimizing performance bottlenecks of logging systems for augmented reality platforms. 2025. [Google Scholar]
- Reyes-Reyes, R.; Mora-Martinez, Y. G.; Garcia-Salgado, B. P.; Ponomaryov, V.; Almaraz-Damian, J. A.; Cruz-Ramos, C.; Sadovnychiy, S. A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning. Mathematics 2025, 13, 2400. [Google Scholar] [CrossRef]
- Taassori, M. Enhanced wavelet-based medical image denoising with Bayesian-optimized bilateral filtering. Sensors 2024, 24, 6849. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yin, X.; Arias, R.; Chen, J. Research on Dynamic Assessment of Glucose-Lipid Metabolism and Personalized Drug Response Prediction Based on Wearable Multimodal Sensing. 2026. [Google Scholar]
- Fahad, M.; Zhang, T.; Khan, S. U.; Albanyan, A.; Siddiqui, F.; Iqbal, Y.; Geng, Y. Optimizing dual energy X-ray image enhancement using a novel hybrid fusion method. Journal of X-Ray Science and Technology 2024, 32, 1553–1570. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.; Fu, Y.; Wang, Z.; Zong, W. Research on Dynamic Balance Control of Ct Gantry Based on Multi-Body Dynamics Algorithm. 2025. [Google Scholar] [PubMed]
- Coletta, A.; Gopalakrishnan, S.; Borrajo, D.; Vyetrenko, S. On the constrained time-series generation problem. Advances in Neural Information Processing Systems 2023, 36, 61048–61059. [Google Scholar]
- Wang, Y.; Chen, J.; Arias, R.; Wang, Y.; Yin, X. Development and Validation of a Patient-Friendly Digital Assessment Platform for Precision Screening of Oral Anti-Obesity Medications (AOMs). 2026. [Google Scholar]
- Marcos, L.; Babyn, P.; Alirezaie, J. Edge Detection Attention Module in Pure Vision Transformer for Low-Dose X-Ray Computed Tomography Image Denoising. Algorithms 2025, 18, 134. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
