Submitted:
10 February 2026
Posted:
10 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. General Context and Problematic Aspects
2.2. Numerical Model
- First term: Characterizes the elastoplastic behavior according to Ludwik’s law, capturing the strain hardening effect.
- Second term: Accounts for viscoplastic behavior, specifically the strengthening effect due to strain rate sensitivity.
- Third term: Quantifies the influence of temperature, reflecting the material’s thermal softening behavior during deformation.
2.3. Designed Punching Tools
2.4. RSM Method
2.5. Von Mises Distribution in AISI D2 Punch
2.5.1. Blank Shaft-Shape Punch
2.5.2. Staircase Shaft-Shape Punch
2.5.3. Double Shaft-Shape Punch
3. Results and Discussion
3.1. Numerical Results
3.2. Experimental Validation
- Machining Difficulty: The standard cylindrical punch is the simplest to manufacture due to its uniform geometry, requiring minimal tooling adjustments and straightforward machining processes. In contrast, the stepped design introduces additional complexity, as it necessitates precise control over multiple diameters and transitions, increasing the risk of machining errors and requiring advanced tooling. The double-shear design, while effective in reducing punching forces, further complicates the process due to its angled shear surfaces, demanding specialized machining techniques and tighter tolerances.
- Manufacturing Costs: Costs are directly tied to the complexity of the design. The standard cylindrical punch remains the most cost-effective option, as it involves fewer machining steps and lower tool wear. The stepped punch, although more expensive due to its multi-stage geometry, can offer cost savings in specific applications where material deformation is more controlled, potentially reducing secondary operations. The double-shear punch, while the most expensive to produce due to its intricate geometry, may justify its cost in high-precision applications where force reduction and part quality are paramount.
- Practical Guidance for Engineering Applications: For high-volume production with standard materials, the cylindrical punch is often the most economical choice. However, in applications requiring enhanced precision, reduced punching forces, or improved part quality, the stepped or double-shear designs may be justified despite their higher costs. Engineers should weigh the trade-offs between initial manufacturing costs and long-term benefits, such as reduced tool wear, improved part quality, and lower energy consumption during operation.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serope, K.; Steven, R.S. Manufacturing Engineering and Technology; Pearson: London, UK, 2013; pp. 450–470. [Google Scholar]
- Zeidi, A.; Ben Saada, F.; Elleuch, K.; Atapek, H. AISI D2 punch head damage: Fatigue and wear mechanism. Eng. Fail. Anal. 2021, 129, 105676. [Google Scholar] [CrossRef]
- Abbas, Adel T.; Al Bahkali, Essam A.; Alqahtani, Saeed M.; Abdelnasser, E.; Naeim, N.; Elkaseer, A. Fundamental investigation into tool wear and surface quality in high-speed machining of Ti6Al4V alloy. Materials 2021, 14, 7128. [Google Scholar] [CrossRef]
- Iqbal, A.; Dar, N. U.; He, N.; Khan, I.; Li, L. Optimizing cutting parameters in minimum quantity of lubrication milling of hardened cold work tool steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2009, vol. 223(no 1), 43–54. [Google Scholar]
- Hattalli, Vinod Laxman; Srivatsa, Shivashankar R. Sheet metal forming processes–recent technological advances. Materials Today: Proceedings 2018, vol. 5(no 1), 2564–2574. [Google Scholar]
- Zeidi, Abdelwaheb; Akrout, Mabrouka; Elleuch, Khaled; Pereira, A. Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part II). Metals 2025, vol. 15(no 12), 1353. [Google Scholar] [CrossRef]
- Singh, U. P.; Streppel, A. H.; Kals, H. J. J. Design study of the geometry of a punching/blanking tool. Journal of Materials Processing Technology 1992, vol. 33(no 4), 331–345. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.; Kim, N. A parametric study on forming length in roll forming. Journal of Materials Processing Technology 2001, 113, 774–778. [Google Scholar] [CrossRef]
- Ferhat, A.; Kemal, Y.; Zafer, T. An experimental work on tool wear affected by die clearance and punch hardness. Arabian Journal for Science and Engineering 2017, vol. 42(no 11), 4683–4692. [Google Scholar] [CrossRef]
- Schey, J.A. Tribology in Metalworking: Friction, Lubrication, and Wear; ASM International: Almere, The Netherlands, 1983; pp. 145–160. [Google Scholar]
- Lindgren, M. Cold roll forming of a U-channel made of high strength steel. J. Mater. Process. Technol. 2007, 186, 77–81. [Google Scholar] [CrossRef]
- Altamirano-Fortoul, R.; Hernando, I.; Rosell, C.M. Texture of bread crust: Puncturing settings effect and its relationship to microstructure. J. Texture Stud. 2013, 44, 85–94. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Smith, P.D.; Yee, C.H.; Collins, I. F. The prediction of deformation length in cold roll-forming. J. Mech. Work. Technol. 1984, 9, 181–191. [Google Scholar] [CrossRef]
- Pratap, Ashwani; Patra; Karali; Dyakonov, Aleksandr A. A comprehensive review of micro-grinding: emphasis on toolings, performance analysis, modeling techniques, and future research directions. The International Journal of Advanced Manufacturing Technology 2019, vol. 104(no 1), 63–102. [Google Scholar] [CrossRef]
- Taheri, E.; Esgandarzadeh Fard, S.; Zandi, Y.; Samali, B. Experimental and numerical investigation of an innovative method for strengthening cold-formed steel profiles in bending throughout finite element modeling and application of neural network based on feature selection method. Applied Sciences 2021, vol. 11(no 11), 5242. [Google Scholar] [CrossRef]
- Brethenoux, G.; Bourgain, E.; Pierson, G.; Jallon, M.; Secordel, P. Cold forming processes: some examples of predictions and design optimization using numerical simulations. Journal of Materials Processing Technology 1996, vol. 60(no 1-4), 555–562. [Google Scholar] [CrossRef]
- Boman, R.; Papeleux, L.; Bui, Q. V.; Ponthot, J. P. Application of the Arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold roll forming process. Journal of Materials Processing Technology 2006, vol. 177(no 1-3), 621–625. [Google Scholar] [CrossRef]
- Qazani, M. R. C.; Bidabadi, B. S.; Asadi, H.; Nahavandi, S.; Bidabadi, F. S. Multiobjective optimization of roll-forming procedure using NSGA-II and type-2 fuzzy neural network. IEEE Transactions on Automation Science and Engineering 2023, 21(3), 3842–3851. [Google Scholar] [CrossRef]
- Ku, T. W. A combined cold extrusion for a drive shaft: a parametric study on tool geometry. Materials 2020, vol. 13(no 10), 2244. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y. Computational Approach to Defect Reduction in Hot Extrusion and Rolling with Material and Process Uncertainties. Doctoral dissertation, The Ohio State University, 2009. [Google Scholar]
- Wen, S.; She, R.; Zhao, Z.; Gong, Y. Optimization of Motor Rotor Punch Wear Parameters Based on Response Surface Method. Machines 2024, vol. 12(no 10), 671. [Google Scholar] [CrossRef]
- Gao, T.; Ying, L.; Hu, P.; Han, X.; Rong, H.; Wu, Y.; Sun, J. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: Experimental trials, numerical analysis. Journal of Manufacturing Processes 2020, vol. 50, 1–16. [Google Scholar] [CrossRef]
- Gomah, M.; Demiral, M. An experimental and numerical investigation of an improved shearing process with different punch characteristics. Stroj. Vestn. J. Mech. Eng 2020, vol. 66, 375–384. [Google Scholar] [CrossRef]
- Dunn, E. C.; Humberstone, C. E.; Iredale, K. F.; Blazevich, A. J. A damaging punch: Assessment and application of a method to quantify punch performance. Translational Sports Medicine 2019, vol. 2(no 3), 146–152. [Google Scholar] [CrossRef]
- Singh, K.; Khatirkar, R. K.; Sapate, S. G. Microstructure evolution and abrasive wear behavior of D2 steel. Wear 2015, vol. 328, 206–216. [Google Scholar] [CrossRef]
- Omar, S. M. T.; Plucknett, K. P. The influence of DED process parameters and heat-treatment cycle on the microstructure and hardness of AISI D2 tool steel. Journal of Manufacturing Processes 2022, vol. 81, 655–671. [Google Scholar] [CrossRef]
- Mallick, R.; Kumar, R.; Panda, A.; Sahoo, A. K. Performance characteristics of hardened AISI D2 steel turning: a review. Materials Today: Proceedings 2020, vol. 26, 2685–2690. [Google Scholar] [CrossRef]
- Lian, C.; Niu, C.; Han, F. Applicability of the formability evaluation method for advanced high strength steels. IOP Conference Series: Materials Science and Engineering 2024, vol. 1307(no 1), 012014. [Google Scholar] [CrossRef]
- Tümer, M.; Warchomicka, F. G.; Pahr, H.; Enzinger, N. Mechanical and microstructural characterization of solid wire undermatched multilayer welded S1100MC in different positions. Journal of Manufacturing Processes 2022, vol. 73, 849–860. [Google Scholar] [CrossRef]
- Dolzhenko, A.; Yanushkevich, Z.; Nikulin, S. A.; Belyakov, A.; Kaibyshev, R. Impact toughness of an S700MC-type steel: Tempforming vs ausforming. Materials Science and Engineering: A 2018, vol. 723, 259–268. [Google Scholar] [CrossRef]
- Meiabadi, S.; Nematzadeh, F.; Kornokar, K.; Mostaan, H.; Shamsborhan, M.; Khandan, R.; Moradi, M. Contrasting the mechanical and metallurgical properties of laser welded and gas tungsten arc welded S500MC steel. Welding in the World 2023, vol. 67(no 9), 2215–2224. [Google Scholar] [CrossRef]
- Zeidi, A.; Saada, F. B.; Elleuch, K.; Atapek, H. Numerical prediction of AISI D2 punch damage. The International Journal of Advanced Manufacturing Technology 2023, vol. 129(no 11), 5671–5677. [Google Scholar] [CrossRef]
- Xiang, J.; Pang, S.; Xie, L.; Hu, X.; Peng, S.; Wang, T. Investigation of cutting forces, surface integrity, and tool wear when high-speed milling of high-volume fraction SiCp/Al6063 composites in PCD tooling. The International Journal of Advanced Manufacturing Technology 2018, vol. 98(no 5), 1237–1251. [Google Scholar] [CrossRef]
- Valoppi, B.; Bruschi, S.; Ghiotti, A.; Shivpuri, R. Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets. International Journal of Mechanical Sciences 2017, vol. 123, 94–105. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Song, Q.; Wan, Y.; Ren, X. A modified Johnson–Cook constitutive model and its application to high speed machining of 7050-T7451 aluminum alloy. Journal of Manufacturing Science and Engineering 2019, vol. 141(no 1), 011012. [Google Scholar] [CrossRef]
- Öztürk, E.; Cavusoglu, O.; Güral, A. Experimental and Numerical Investigation of Strain Rate Dependent Flow and Fracture Behavior of 6181A-T4 Alloy Using the Johnson–Cook Model. Crystals 2025, vol. 15(no 6), 528. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Li, Z.; Wang, J.; Yang, H.; Liu, J.; Ji, C. A modified Johnson–Cook constitutive model for characterizing the hardening behavior of typical magnesium alloys under tension at different strain rates: Experiment and simulation. Journal of Materials Engineering and Performance 2020, vol. 29(no 12), 8319–8330. [Google Scholar] [CrossRef]
- Johnson, G. R.; Cook, W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 1985, 21(no 1), 31–48. [Google Scholar] [CrossRef]
- Gildemyn, E. Caractérisation des Procédés de Fabrication de Pièces de Sécurité Automobile. Optimisation Multiobjectifs de la Mise en Forme . Ph.D. Thesis, Arts et Métiers ParisTech, Paris, France, 2008. [Google Scholar]
- Opoz, T.T.; Chen, X. Chip formation mechanism using finite element simulation. Stroj. Vestn.-J. Mech. Eng. 2016, 62. [Google Scholar] [CrossRef]
- Touache, A. Contribution à la Caractérisation et à la Modélisation de L’influence de la Vitesse et de la Température sur le Comportement en Découpage de Tôles Minces . Ph.D. Thesis, Université de Franche-Comté, Besançon, France, 2006. [Google Scholar]
- Lestriez, P.; Saanouni, K.; Cherouat, A. Simulation numérique de la coupe orthogonale par couplage thermique-comportement-endommagement en transformations finies. Mécanique Ind. 2005, 6, 297–307. [Google Scholar] [CrossRef]
- Coer, J.; Laurent, H.; Oliveira, M.C.; Manach, P.; Menezes, L. Detailed experimental and numerical analysis of a cylindrical cup deep drawing: Pros and cons of using solid-shell elements. Int. J. Mater. Form. 2018, 11, 357–373. [Google Scholar] [CrossRef]
- Atkins, A.G. The Science and Engineering of Cutting: The Mechanics and Processes of Separating, Scratching, and Punching Materials; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- Andrade-Campos, A.; Teixeira-Dias, F.; Krupp, U.; Barlat, F.; Rauch, E. F.; Grácio, J. J. Effect of strain rate, adiabatic heating and phase transformation phenomena on the mechanical behaviour of stainless steel. Strain 2010, vol. 46(no 3), 283–297. [Google Scholar] [CrossRef]
- Hambli, R.; Soulat, D.; Chamekh, A. Finite element prediction of blanking tool cost caused by wear. The International Journal of Advanced Manufacturing Technology 2009, vol. 44(no 7), 648–656. [Google Scholar] [CrossRef]
- Jarfors, A. E.; Castagne, S. J.; Danno, A.; Zhang, X. Tool wear and life span variations in cold forming operations and their implications in microforming. Technologies 2017, vol. 5(no 1), 3. [Google Scholar] [CrossRef]
- Subramonian, S.; Altan, T.; Ciocirlan, B.; Campbell, C. Optimum selection of variable punch-die clearance to improve tool life in blanking non-symmetric shapes. International Journal of Machine Tools and Manufacture 2013, vol. 75, 63–71. [Google Scholar] [CrossRef]
- Bhoir, S.; Verma, M.; Dongare, M. Taguchi-based experimental design and response surface modelling for burr prediction in multi-material sheet metal blanking process. Discover Mechanical Engineering 2026, vol. 5(no 1), 2. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Z.; Deng, L.; Wang, X.; Long, J.; Jiang, X.; Xia, J. A review of the intelligent optimization and decision in plastic forming. Materials 2022, vol. 15(no 19), 7019. [Google Scholar] [CrossRef]
- Sergejev, F.; Peetsalu, P.; Sivitski, A.; Saarna, M.; Adoberg, E. Surface fatigue and wear of PVD coated punches during fine blanking operation. Engineering Failure Analysis 2011, vol. 18(no 7), 1689–1697. [Google Scholar] [CrossRef]
- Politis, D. J.; Politis, N. J.; Lin, J.; Dean, T. A. A review of force reduction methods in precision forging axisymmetric shapes. The International Journal of Advanced Manufacturing Technology 2018, vol. 97(no 5), 2809–2833. [Google Scholar] [CrossRef]
- Algarni, M. Mechanical properties and microstructure characterization of AISI “D2” and “O1” cold work tool steels. Metals 2019, vol. 9(no 11), 1169. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, J.; Yang, X.; Zhu, Z.; Liu, S. Failure analysis on the collapse of leaf spring steels during cold-punching. Engineering Failure Analysis 2010, vol. 17(no 4), 971–978. [Google Scholar] [CrossRef]
- Nakamachi, E.; Huo, T. Dynamic-explicit elastic plastic finite-element simulation of hemispherical punch-drawing of sheet metal. Engineering Computations 1996, vol. 13(no 2/3/4), 327–338. [Google Scholar] [CrossRef]
- Wosatko, A.; Pamin, J.; Polak, M. A. Application of damage–plasticity models in finite element analysis of punching shear. Computers & Structures 2015, 151, 73–85. [Google Scholar] [CrossRef]
- Zeidi, A.; Saada, F. B.; Elleuch, K.; Atapek, H. An Experimental Work of Punch-Die Clearance Effect on Punching Force in the Event of Punching S500 MC Sheet Metal. In International Conference on Advances in Mechanical Engineering and Mechanics; Springer Nature Switzerland: Cham, 2024; pp. 142–148. [Google Scholar]
- Bui, Q.V.; Ponthot, J.P. Numerical simulation of cold roll-forming processes. Journal of Materials Processing Technology 2008, 202, 275–282. [Google Scholar] [CrossRef]
- Park, S. C.; Cheon, I. J.; Park, H.; Hong, S. K.; Lee, K. H. Development of a free-surface profile prediction model for multi-pass shape roll die drawing process using response surface method. Journal of Advanced Marine Engineering and Technology 2020, 44(5), 367–375. [Google Scholar] [CrossRef]
- Zeng, G.; Li, S.H.; Yu, Z.Q.; Lai, X.M. Optimization design of roll profiles for cold roll forming based on response surface method. Materials & Design 2009, 30, 1930–1938. [Google Scholar]
- Wang, Z.; Gong, B. Residual Stress in the Forming. In Handbook of Residual Stress and Deformation of Steel; Materials Park: ASM International, 2002; pp. 141–149. [Google Scholar]
- Liu, X. L.; Cao, J. G.; Huang, S. X.; Yan, B.; Li, Y. L.; Zhao, R. G. Experimental and numerical prediction and comprehensive compensation of springback in cold roll forming of UHSS. The International Journal of Advanced Manufacturing Technology 2020, 111(3), 657–671. [Google Scholar] [CrossRef]
- Arslan, Y.; Özdemir, A. Punch structure, punch wear and cut profiles of AISI 304 stainless steel sheet blanks manufactured using cryogenically treated AISI D3 tool steel punches. The International Journal of Advanced Manufacturing Technology 2016, 87(1), 587–599. [Google Scholar] [CrossRef]
- Zeidi, A.; Akrout, M.; Elleuch, K.; Pereira, A. Reducing Maximum Punching Force in Sheet Cold Forming: A Numerical Study of a New Punch Design (Part I). Metals 2025, 15(12), 1338. [Google Scholar] [CrossRef]
- Singh Sivam, S. S.; Rajendran, R.; Harshavardhana, N. An investigation of hybrid models FEA coupled with AHP-ELECTRE, RSM-GA, and ANN-GA into the process parameter optimization of high-quality deep-drawn cylindrical copper cups. Mechanics Based Design of Structures and Machines 2024, 52(1), 498–522. [Google Scholar] [CrossRef]












| E (GPa) | ν | Density (kg/m3) | |
| AISI D2 | 230 | 0.28 | 7.9 × 103 |
| S500MC | 209 | 0.28 | 7.9 × 103 |
| Parameters | AISI D2 | S500MC |
| A (N/mm2) | 1490 | 510 |
| B (N/mm2) | 660 | 220 |
| n | 0.04 | 0.28 |
| C | 0.29 | 0.0019 |
| m | 0.38 | 1 |
| 1 | 1 | |
| D1 | 0.69103 | 0.53467 |
| D2 | 0 | 0 |
| D3 | 0 | 0 |
| D4 | −0.03524 | −0.01913 |
| D5 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
