Submitted:
10 February 2026
Posted:
10 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- i.
- Refined taxonomy of PEMFC mathematical modeling approaches, with an in-depth summary of 0D model formulation, parameterization, and improvement strategies.
- ii.
- Based on the established PEMFC model taxonomy, the applied metaheuristic algorithms are further categorized, and their suitability for different model structures and identification objectives is systematically discussed.
- iii.
- Five summary tables compile optimization results for the five most commonly used commercial PEMFC models, while a comparative analysis of 26 algorithms and their variants (over 40 metaheuristic approaches in total) is provided, including a formula-level comparison of their iterative update mechanisms.
| FC Type | Anode | Electrolyte | Fuel | Operating Temp. | Efficiency | Power Output | Startup Time | Pros | Cons |
| Proton Exchange (PEM & HT-PEM)[25,26] | Platinum | Polymer Membrane | Hydrogen | 80–100 °C (176–212 °F), 200 °C (224 °F) |
30–40% | 0.12–30 kW | < 1 minute | Quick startup, Small, Lightweight |
Sensitive to humidity, salinity, cold temperatures |
| Alkaline (AFC) [27,28] |
Platinum or Carbon | Potassium Hydroxide (KOH) | Hydrogen, Ammonia |
60–70 °C (140–158 °F) |
60–70% (80% CHP) |
0.5–200 kW | < 1 minute | Quick startup, Temp resistant, Low-cost ammonia fuel |
Liquid catalyst adds weight, relatively bulky |
| Phosphoric Acid (PAFC)[29,30] | Platinum | Phosphoric Acid (H₃PO₄) | Hydrogen, Methanol |
150–200 °C (336–448 °F) |
40–50% (80% CHP) |
100–400 kW | 10–30 minutes | Stable, Mature technology |
Acid vapor, less power-dense |
| Molten Carbonate (MCFC)[31,32] | Steel/Nickel | Molten Carbonate | Natural gas, Methanol, Ethanol, Biogas, Coal gas |
650 °C (1202 °F) |
50% (80% CHP) |
10 kW–2 MW | 10 minutes | Fuel variety, High efficiency |
Slow response, highly corrosive |
| Direct Methanol (DMFC)[33,34] | Platinum-Ruthenium on Carbon | Polymer Membrane | Methanol | 50–120 °C (122–248 °F) |
20–30% | 0.01–100 kW | < 5 minutes | Simple fuel storage, Compact system, No reformer required |
Low efficiency, Methanol crossover, Expensive catalysts |
| Solid Oxide (SOFC)[19,35,36] | Ceramic | Yttria-Stabilized Zirconia (YSZ) | Natural gas, Methanol, Ethanol, Biogas, |
500–1000 °C (932–1832 °F) |
60% | 0.01–2000 kW | 60 minutes | Fuel variety | Long startup time, intense heat |
| Dimension | Spatial description | Main phenomena | Typical type | Main outputs | Strengths | Limitations |
| 0-D[10,11] | No spatial resolution | Empirical polarization (V–I) | No spatial direction | Overall cell/stack voltage–current relationship; Lumped outputs |
Extremely fast; easy parameter fitting; Suitable for system-level studies and control-oriented models |
Minimal mechanistic insight; Cannot capture spatial non-uniformity; Limited for design optimization across varying conditions |
| 1-D[12,13] | One spatial direction | Reaction and transport in MEA/porous media; Charge transfer |
Through-plane; Along-channel |
1-D profiles of species, water, potentials, etc.; Trend of current density along the flow channel and location |
Low cost; Retains key physics along a dominant direction; Efficient for parametric sweeps and sensitivity studies |
Misses in-plane effects (rib/channel); Accuracy depends on effective parameters and simplifying assumptions |
| 2-D[14,15] | Two directions (plane) | Rib/channel effects; Reactant depletion; Water buildup |
Cross-channel; Along-channel |
Distributions of water, temperature, and reactants within the PEMFC (2-D fields) | Captures major non-uniformities (rib/channel and along-channel); Balances fidelity and cost for engineering analysis |
Cannot capture inherently 3-D local effects; Relies on effective averaging in the third direction. |
| 3-D[9] | Full 3-D geometry | Full spatial coupling (multi-physics) |
Full 3-D | Full 3-D fields | Highest spatial fidelity; Best for local phenomena, detailed diagnostics, and geometry/design evaluation |
Highest computational cost; Demanding meshing and parameterization; Often impractical for large parametric studies |
2. PEMFC Zero-Dimensional Model
2.1. Electrochemical Process Mechanism
2.2. Mathematical Modelling
2.2.1. Seven Parameters Model
2.2.2. Two Parameters Model
3. Identification Criteria and Commercial Models
3.1. Identification Criteria
3.2. Commercial Models
4. Meta-Heuristic Algorithms for PEMFC Parameter Identification
4.1. Evolution-Based Metaheuristic Algorithms
4.1.1. Differential Evolution (DE)

4.1.2. Fish Migration Optimization (FMO)

4.2. Swarm Intelligence Metaheuristic Algorithms
4.2.1. Black Kite Algorithm (BKA)
4.2.2. Red-Billed Blue Magpie Optimizer (RBMO)
4.2.3. Manta Ray Foraging Optimization (MRFO)

4.2.4. Spotted Hyena Optimizer (SHO)

4.2.5. Artificial Bee Colony (ABC)
| Years | Methods | Parameters | SSE | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ×10-3 | ×10-5 | ×10-4 | ×10-4 | ||||||
| 2025 | IAGDE[64] | -1.1489 | 3.9900 | 9.2500 | -0.0010 | 13.0000 | 0.0149 | 0.1633 | 6.1350 |
| 2025 | PO[65] | -1.1052 | 3.0679 | 3.6176 | -0.9540 | 24.0000 | 4.7655 | 0.1794 | 1.0072 |
| 2025 | PO[66] | -0.8959 | 2.4210 | 3.6000 | -0.9500 | 23.0000 | 6.7300 | 0.1753 | 0.2424 |
| 2024 | OL-GOOSE[84] | -0.2294 | 1.0770 | 8.2300 | -0.9540 | 23.5065 | 8.0000 | 0.1739 | 1.3310 |
| 2024 | HMO[85] | -0.9364 | 2.9547 | 6.5378 | -1.0632 | 22.6025 | 2.8713 | 0.1501 | 0.0001 |
| 2024 | MMRFO[86] | -1.1914 | 3.8170 | 6.3251 | -0.9541 | 21.1078 | 6.7613 | 0.1752 | 1.0566 |
| 2023 | QOBO[87] | -1.0178 | 3.5590 | 9.7710 | -0.9540 | 22.9990 | 6.7230 | 0.1753 | 1.0460 |
| 2023 | CBO[88] | -0.8863 | 2.7936 | 8.9200 | -0.9540 | 10.0000 | 6.7766 | 0.1631 | 1.1171 |
| 2023 | CBO[89] | -1.1619 | 3.5759 | 5.3503 | -0.9540 | 23.0000 | 1.0000 | 0.1523 | - |
| 2023 | IAHA[71] | -0.8554 | 2.4000 | 3.6000 | -1.0600 | 21.5388 | 2.7300 | 0.1500 | 0.00015 |
| 2022 | BES[90] | -0.8845 | 2.5870 | 5.1800 | -1.0200 | 24.0000 | 5.8200 | 0.1471 | 0.03510 |
| 2021 | MAEFA[91] | -1.1155 | 3.3490 | 4.4000 | -0.9500 | 15.5857 | 8.0000 | 0.0818 | 0.5607 |
| 2021 | HHO[92] | -0.8543 | 2.4162 | 4.2195 | -0.9554 | 13.2011 | 3.5029 | 0.1766 | 1.0678 |
| 2020 | ISSA[93] | -1.1589 | 4.1455 | 5.6443 | -2.2908 | 13.7793 | 1.0000 | 0.0742 | 0.7916 |
| 2020 | VSDE[94] | -0.8576 | 3.0100 | 7.7800 | -0.9540 | 23.0000 | 1.3390 | 0.1516 | 1.2660 |
| 2019 | SSO[21] | -0.9664 | 2.2833 | 3.4000 | -0.9540 | 15.7969 | 6.6853 | 0.1804 | 1.5170 |
| 2019 | FPA[75] | -1.0509 | 3.4000 | 6.5880 | -1.0622 | 12.7962 | 1.9101 | 0.2256 | 0.0019 |
| 2019 | WOA[76] | -0.8902 | 3.3088 | 9.7546 | -1.0330 | 22.8311 | 5.6770 | 0.1464 | 0.0018 |
| 2019 | CS-EO[52] | -1.0353 | 3.354 | 7.2428 | -0.9540 | 10.0000 | 7.1233 | 0.1471 | 7.5753 |
4.2.6. Grey Wolf Optimizer (GWO)
4.2.7. Coot Bird Optimizer (CBO)
4.2.8. Artificial Hummingbird Algorithm (AHA)
4.2.9. Chicken Swarm Optimization (CSO)

4.2.10. Bonobo Optimizer (BO)
4.2.11. Whale Optimization Approach (WOA)
| EDWOA | ×10-3 | ×10-5 | ×10-4 | ×10-4 | |||
| Range Set | (-0.952,-0.944) | (0.001, 0.005) | (7.4e-5, 7.8e-5) | (-1.98e-4, -1.88e-4) |
(14,23) | (1.0e-4,8.0e-4) | (0.016,0.05) |
| Extracted Parameters | -0.9440 | 3.0770 | 7.8000 | -1.880 | 23.000 | 1.0000 | 0.0327 |
| SSE | 15.6669 |
4.2.12. GOOSE Optimization Algorithm(GOA)
| Years | Methods | Parameters | SSE | ||||||
| ×10-3 | ×10-5 | ×10-4 | ×10-4 | ||||||
| 2025 | IAGDE[64] | -1.1846 | 3.6500 | 5.9700 | -0.0007 | 15.7311 | 3.9402 | 0.0136 | 1.2173 |
| 2025 | IBKA[59] | -0.8225 | 2.3000 | 3.9500 | -0.8000 | 13.1539 | 2.1500 | 0.0100 | 0.0715 |
| 2025 | PO[65] | -0.8532 | 2.3988 | 3.6022 | -0.9540 | 13.0947 | 1.0000 | 0.0136 | 2.0862 |
| 2025 | PO[66] | -0.8549 | 2.4380 | 3.8500 | -0.9500 | 14.0000 | 1.2000 | 0.0168 | 0.2752 |
| 2024 | OL-GOOSE[84] | -1.0363 | 2.9300 | 3.6000 | -0.9540 | 13.0223 | 1.0000 | 0.0136 | 2.1042 |
| 2024 | ADSOOA[107] | -1.1710 | 4.4040 | 9.6120 | -0.9540 | 13.3460 | 1.0000 | 0.0136 | - |
| 2024 | HMO[85] | -1.1997 | 3.7318 | 5.9205 | -0.9540 | 13.4650 | 1.0000 | 0.0136 | 2.1457 |
| 2024 | SHO[70] | -0.8532 | 2.4170 | 3.6000 | -0.9540 | 15.7764 | 7.5400 | 0.0323 | 0.1308 |
| 2024 | RIME[108] | -0.8819 | 2.4385 | 3.4000 | -0.9540 | 13.0000 | - | 0.0019 | 1.9459 |
| 2024 | INFO[108] | -1.1976 | 4.0142 | 7.9847 | -0.9540 | 10.0000 | 3.1111 | 0.1611 | 2.2881 |
| 2023 | DO[109] | -1.1082 | 3.4849 | 5.2333 | -0.9530 | 23.0714 | 1.2753 | 0.0836 | 2.0776 |
| 2023 | IABC[83] | -0.9892 | 3.5544 | 8.3970 | -0.9540 | 11.8775 | 1.0000 | 0.0136 | 2.9848 |
| 2023 | CBO[88] | -1.0945 | 2.8818 | 5.6600 | -1.1620 | 16.2870 | 1.0125 | 0.1148 | 1.5734 |
| 2023 | CBO[89] | -1.1706 | 4.4040 | 9.6121 | -0.9540 | 13.3460 | 1.0000 | 0.0136 | - |
| 2023 | IAHA[71] | -0.8831 | 2.6000 | 3.6000 | -0.9500 | 13.4650 | 1.0000 | 0.0136 | 2.1457 |
| 2023 | ICSO[72] | -0.8500 | - | 9.7800 | -0.9560 | 13.3300 | 1.0000 | 0.0130 | 2.1390 |
| 2023 | ARO[73] | -1.0085 | 3.0434 | 4.9796 | -0.9540 | 13.4457 | 1.0000 | 0.0136 | 2.1113 |
| 2022 | ICSO[72] | -0.8760 | 2.6500 | 4.1900 | -0.1028 | 13.0000 | 1.0000 | 0.0530 | 1.8600 |
| 2021 | MAEFA[91] | -1.1490 | 3.3490 | 3.6000 | -0.9500 | 13.0975 | 1.0000 | 0.0136 | 2.0794 |
| 2021 | ASSA[74] | -0.7800 | 3.4400 | 8.2400 | -0.9590 | 13.1300 | 0.1100 | 0.0600 | 2.0300 |
| 2020 | VSDE[94] | -1.1212 | 3.3487 | 4.6787 | -0.9540 | 13.0000 | 1.0000 | 0.0494 | 2.0885 |
| 2019 | FPA[75] | -1.1605 | 4.0000 | 8.4565 | -1.0123 | 15.1264 | 1.2863 | 0.0153 | 0.0983 |
| 2019 | SFLA[55] | -1.0231 | 3.4760 | 7.7883 | -9.5400 | 15.0323 | 1.6200 | 0.0136 | 2.1671 |
4.3. Bio-Inspired Metaheuristic Algorithm
4.3.1. Puma Optimization Algorithm (PO)
4.3.2. Dandelion Optimization Algorithm (DOA)
4.3.3. Bald Eagle Search (BES)

4.3.4. Parrot Optimizer (PO)
4.3.5. Pelican Optimization Algorithm(POA)

4.4. Physics-based Metaheuristic Algorithms
4.4.1. Archimedes Optimization Algorithm (AOA)
4.4.2. Artificial Electric Field Algorithm (AEFA)
| Years | Methods | Parameters | SSE | ||||||
| ×10-3 | ×10-5 | ×10-4 | ×10-4 | ||||||
| 2025 | IAGDE[64] | -0.6306 | 1.5400 | 3.8100 | -1.9300 | 17.8000 | 16.100 | 0.1991 | 0.0116 |
| 2025 | IBKA[59] | -1.0222 | 3.0000 | 5.8800 | -1.9300 | 20.8637 | 1.0600 | 0.0163 | 0.0119 |
| 2025 | PO[65] | -0.8532 | 2.1800 | 3.6000 | -1.9000 | 20.8772 | 1.0000 | 0.0161 | 0.0255 |
| 2025 | PO[66] | -0.8532 | 2.1793 | 3.6000 | -1.9289 | 20.8145 | 1.0000 | 0.0161 | 0.0126 |
| 2024 | OL-GOOSE[84] | - 1.099 | 3.1900 | 6.0000 | -1.9000 | 23.9986 | 4.0000 | 0.0163 | 0.0117 |
| 2024 | MSMA[116] | -1.1996 | 3.1413 | 3.6003 | -1.9265 | 22.0849 | 2.1398 | 0.0163 | 0.0117 |
| 2024 | HMO[85] | -1.0573 | 3.3155 | 6.9733 | -1.9302 | 20.8769 | 1.0001 | 0.0161 | 0.0117 |
| 2024 | AGPSO[117] | -1.0283 | 3.4000 | 8.2000 | -1.9300 | 20.7300 | 1.1000 | 0.0162 | 0.0107 |
| 2024 | ESSA[118] | -0.8532 | 2.2577 | 3.6000 | -1.9275 | 20.7722 | 1.0007 | 0.0162 | 0.0117 |
| 2024 | MMRFO[86] | -1.1421 | 3.1442 | 4.8535 | -1.9298 | 21.0712 | 1.1625 | 0.0162 | 0.0116 |
| 2024 | AOA[114] | -0.9712 | 2.7704 | 4.3020 | -1.9520 | 19.9760 | 1.7720 | 0.0154 | 0.0123 |
| 2024 | SHO[70] | -1.1995 | 3.2690 | 3.6100 | -2.1000 | 10.1424 | 1.7300 | 0.0309 | 0.0021 |
| 2024 | INFO[119] | -1.1548 | 3.3586 | 5.3564 | -1.9176 | 10.0000 | 1.9130 | 0.0168 | 0.0128 |
| 2024 | SL-PSO[120] | -0.8963 | 4.8000 | 8.6424 | -1.4400 | 17.6400 | 36.300 | 0.1018 | 0.0380 |
| 2023 | IABC[83] | -0.9467 | 3.3973 | 7.5589 | -1.9275 | 20.8709 | 1.1000 | 0.0163 | 0.0117 |
| 2023 | CBO[88] | -1.0922 | 2.8264 | 6.9700 | -1.2120 | 23.1540 | 1.4445 | 0.0141 | 0.0116 |
| 2023 | CBO[89] | -1.1997 | 3.2414 | 3.6000 | -1.9302 | 20.8772 | 1.0000 | 0.0161 | - |
| 2023 | IAHA[71] | -0.8774 | 3.5000 | 9.5600 | -1.9300 | 20.8772 | 1.0001 | 0.0161 | 0.0117 |
| 2023 | ARO[73] | -1.1762 | 3.7344 | 7.3729 | -1.9302 | 20.8772 | 1.0000 | 0.0161 | 0.0117 |
| 2022 | ICSO[72] | -0.8420 | 5.1500 | 9.5400 | -2.7000 | 23.0000 | 3120.0 | 0.0190 | 0.0100 |
| 2021 | HHO[92] | -1.0931 | 3.2804 | 5.6740 | -1.8967 | 20.0436 | 2.2579 | 0.0151 | 0.0149 |
| 2020 | ISSA[93] | -1.0979 | 3.3352 | 5.9034 | -1.9275 | 21.2495 | 1.4823 | 0.0161 | 0.0116 |
| 2020 | VSDE[94] | -1.1970 | 4.2330 | 9.7990 | -0.1920 | 20.1940 | 1.1080 | 0.0157 | 0.0121 |
| 2019 | SSO[21] | -1.0180 | 2.3151 | 5.2400 | -1.2815 | 18.8547 | 7.5036 | 0.0136 | 7.1889 |
| 2019 | CS-EO[52] | -1.1365 | 2.9254 | 3.7688 | -1.3949 | 18.5446 | 8.0000 | 0.0136 | 5.5604 |
| 2019 | FPA[75] | -0.9851 | 2.8000 | 4.4600 | -2.3200 | 17.4598 | 1.6600 | 0.0697 | 0.0164 |
| 2019 | SFLA[55] | -0.9657 | 3.0800 | 7.2236 | -1.9300 | 20.8862 | 1.0000 | 0.0161 | 0.0117 |
4.4.3. Rime-Ice Algorithm (RIME)
4.4.4. Weighted Mean of Vectors Optimizer (INFO)
4.5. Social-Based Metaheuristic Algorithms
4.5.1. Human Memory Optimizer (HMO)
4.5.2. Artificial Rabbits Optimization (ARO)

4.5.3. Social Learning-based Particle Swarm Optimization (SL-PSO)
| Years | Methods | Parameters | SSE | ||||||
| ×10-3 | ×10-5 | ×10-4 | ×10-4 | ||||||
| 2025 | MM-MFO[124] | -0.8000 | 2.3000 | 5.6837 | -1.3587 | 13.9909 | 8.3000 | 0.0100 | 1.0996 |
| 2025 | PO[65] | -0.8603 | 2.2782 | 3.6001 | -1.7382 | 14.4208 | 1.0000 | 0.0138 | 0.3314 |
| 2024 | ESSA[118] | -1.1763 | 3.1115 | 3.6000 | -1.3495 | 11.6174 | 1.0000 | 0.0139 | 0.6013 |
| 2024 | HMO[85] | -1.1041 | 2.9895 | 3.6021 | -1.7389 | 14.4394 | 1.0000 | 0.0138 | 0.3314 |
| 2024 | WNT-GWO[97] | -0.8532 | 2.8105 | 8.0883 | -1.2887 | 14.3197 | 1.6833 | 0.0339 | 7.9547 |
| 2024 | ADSOOA[107] | -0.8490 | 2.4230 | 5.2830 | 1.8800 | 23.0000 | 1.0070 | 0.0292 | - |
| 2024 | MSMA[116] | -1.0986 | 2.7246 | 3.6000 | -1.5603 | 23.0000 | 1.0000 | 0.0545 | 0.6420 |
| 2023 | IFMO[78] | -0.8010 | 2.9620 | 6.0890 | -1.5830 | 14.0000 | 2.6700 | 0.0270 | - |
| 2023 | GTO[125] | -0.9468 | 3.2000 | 7.5200 | -1.7000 | 15.4931 | 1.0000 | 0.0160 | 0.3378 |
| 2023 | DO[109] | -0.9616 | 2.5344 | 3.6000 | -1.3825 | 13.3372 | 4.2320 | 0.0150 | 0.1584 |
| 2023 | CBO[89] | -0.8490 | 2.4220 | 5.2826 | -1.8800 | 23.0000 | 1.0068 | 0.0291 | - |
| 2023 | QOBO[87] | -0.9493 | 2.2890 | 3.6000 | -1.5580 | 23.0000 | 1.0000 | 0.0545 | 0.6355 |
| 2023 | IAHA[71] | -1.0866 | 3.3000 | 5.1000 | -1.7000 | 19.9358 | 1.0000 | 0.0145 | 0.3359 |
| 2023 | ICSO[72] | -1.0700 | - | 7.9100 | -1.5000 | 23.0000 | 1.0000 | 0.0550 | 0.6070 |
| 2022 | BSOA[126] | -0.8560 | 2.6400 | 7.9800 | -1.2100 | 13.2000 | 1.0000 | 0.0333 | 0.7200 |
| 2022 | GBO[127] | -0.9909 | 3.0800 | 7.0000 | -2.1000 | 10.7636 | -4.3900 | 0.0185 | 0.0557 |
| 2021 | CEPSO[128] | -0.8556 | 2.4024 | 5.7420 | -1.5838 | 25.0000 | 1.0000 | 0.0555 | 0.6112 |
| 2021 | IAEO[129] | -0.9991 | 2.8250 | 4.4700 | -1.7000 | 19.9358 | 1.0000 | 0.0145 | 0.3360 |
| 2021 | HHO[92] | -1.1097 | 3.4586 | 8.3168 | -1.5168 | 22.9454 | 3.8308 | 0.0543 | 0.6458 |
| 2020 | ISSA[93] | -0.8616 | 3.1548 | 9.7857 | -1.5423 | 22.8812 | 1.0016 | 0.0547 | 0.6434 |
| 2020 | VSDE[94] | -1.1921 | 3.1990 | 3.7990 | -1.8700 | 22.8170 | 1.2020 | 0.0290 | 1.0526 |
| 2020 | TGA[130] | -1.1914 | 4.1120 | 6.0570 | -1.7090 | 18.6800 | 4.8520 | 0.0544 | 0.7496 |
| 2019 | JAYA-NM[49] | -1.1996 | 3.5500 | 6.0000 | -1.2000 | 13.2287 | 1.0000 | 0.0333 | 5.2513 |
| 2019 | CS-EO[52] | -0.8532 | 2.8121 | 8.1180 | -1.2623 | 14.4722 | 1.0000 | 0.0353 | 8.0665 |
| 2019 | FPA[75] | -0.8775 | 2.5000 | 6.4439 | -1.2531 | 12.0160 | 0.6369 | 0.0198 | 0.2872 |
| 2019 | WOA[76] | -0.9565 | 3.2221 | 8.2328 | -1.7541 | 20.4470 | 1.0820 | 0.0152 | 0.0493 |
| 2019 | SSO[21] | -1.0554 | 3.7953 | 9.8000 | -1.1755 | 24.0000 | 1.0884 | 0.0136 | 1.1508 |
5. Summary and discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bodkhe, R. G.; Shrivastava, R. L.; Soni, V. K.; Chadge, R. B. A Review of Renewable Hydrogen Generation and Proton Exchange Membrane Fuel Cell Technology for Sustainable Energy Development. International Journal of Electrochemical Science 2023, 18(5), 100108. [Google Scholar] [CrossRef]
- Boroumandfar, G.; Khajehzadeh, A.; Eslami, M.; Syah, R. B. Information Gap Decision Theory with Risk Aversion Strategy for Robust Planning of Hybrid Photovoltaic/Wind/Battery Storage System in Distribution Networks Considering Uncertainty. Energy 2023, 278, 127778. [Google Scholar] [CrossRef]
- Arsalis, A. A Comprehensive Review of Fuel Cell-Based Micro-Combined-Heat-and-Power Systems. Renewable and Sustainable Energy Reviews 2019, 105, 391–414. [Google Scholar] [CrossRef]
- Kwon, L.; Kang, J.-G.; Baik, K. D.; Kim, K.; Ahn, C. Advancement and Applications of PEMFC Energy Systems for Large-Class Unmanned Underwater Vehicles: A Review. International Journal of Hydrogen Energy 2024, 79, 277–294. [Google Scholar] [CrossRef]
- Cai, F.; Cai, S.; Tu, Z. Proton Exchange Membrane Fuel Cell (PEMFC) Operation in High Current Density (HCD): Problem, Progress and Perspective. Energy Conversion and Management 2024, 307, 118348. [Google Scholar] [CrossRef]
- Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V. Mechanistic Equivalent Circuit Modelling of a Commercial Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources 2018, 379, 328–337. [Google Scholar] [CrossRef]
- M. R., F; A. J., C; H. M. A., I; others. Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell. Journal of Power Sources 2000. [Google Scholar]
- M, Y.; L, Z.; L. T., Y; others. Optimal Model Identification of the PEMFCs Using Optimized Rotor Hopfield Neural Network. Energy Reports 2021, 7, 3655–3663. [Google Scholar] [CrossRef]
- K, E.; L, B.; M, B.; others. Online Identification of Semi-Empirical Model Parameters for PEMFCs. International Journal of Hydrogen Energy 2014, 39(36), 21165–21176. [Google Scholar] [CrossRef]
- B. D., M; V. M., W. Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte. AIChE journal 1991, 37(8), 1151–1163. [Google Scholar]
- Springer, T. E.; Zawodzinski, T. A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell Model. Journal of the electrochemical society 1991, 138(8), 2334. [Google Scholar] [CrossRef]
- K, D.; P, E.; G, L. Mathematical Model of the PEMFC. Journal of Applied Electrochemistry 2000, 30(12), 1377–1387. [Google Scholar] [CrossRef]
- M, H.; A. H., H; others, A. H. Energy Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC) with an Open-Ended Anode Using Agglomerate Model: A CFD Study. Energy 2019, 188. [Google Scholar]
- F. Y., M; A, S. A Three-Dimensional Full-Cell CFD Model Used to Investigate the Effects of Different Flow Channel Designs on PEMFC Performance. International Journal of Hydrogen Energy 2007, 32(17), 4466–4476. [Google Scholar]
- G, Z.; L, F.; J, S.; others. A 3D Model of PEMFC Considering Detailed Multiphase Flow and Anisotropic Transport Properties. International Journal of Heat and Mass Transfer 2017, 115, 714–724. [Google Scholar] [CrossRef]
- H, Y.; H, D.; X, W.; others. A Novel Model-Based Internal State Observer of a Fuel Cell System for Electric Vehicles Using Improved Kalman Filter Approach. Applied Energy 2020, 268. [Google Scholar]
- M, S.; C, K.; O.-M., C. Control-Oriented Model of a Membrane Humidifier for Fuel Cell Applications. Energy Conversion and Management 2017, 137, 121–129. [Google Scholar] [CrossRef]
- N, R.; B, J.; K, B.; others. Comparative Study of PEM Fuel Cell Parameter Extraction Using Genetic Algorithm. Ain Shams Engineering Journal 2015, 6(4), 1187–1194. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, G. Parameter Fitting of PEMFC Models Based on Adaptive Differential Evolution. International Journal of Electrical Power & Energy Systems 2014, 62, 189–198. [Google Scholar] [CrossRef]
- M, S.; A, R.; M, K.; others. Parameter Optimization for a PEMFC Model with Particle Swarm Opti-Mization. International Journal of Engineering and Applied Sciences 2011, 3(1), 102–108. [Google Scholar]
- El-Fergany, A. A. Extracting Optimal Parameters of PEM Fuel Cells Using Salp Swarm Optimizer. Renewable Energy 2018, 119, 641–648. [Google Scholar] [CrossRef]
- Ali, M.; El-Hameed, M. A.; Farahat, M. A. Effective Parameters’ Identification for Polymer Electrolyte Membrane Fuel Cell Models Using Grey Wolf Optimizer. Renewable Energy 2017, 111, 455–462. [Google Scholar] [CrossRef]
- B, Y.; J, W.; X, Z.; others. Comprehensive Overview of Meta-Heuristic Algorithm Applications on PV Cell Parameter Identification. Energy Conversion and Management 2020, 208. [Google Scholar]
- Ashraf, H.; Abdellatif, S. O.; Elkholy, M. M.; El-Fergany, A. A. Computational Techniques Based on Artificial Intelligence for Extracting Optimal Parameters of PEMFCs: Survey and Insights. Arch Computat Methods Eng 2022, 29(6), 3943–3972. [Google Scholar] [CrossRef]
- V. D. L., F; E, P.; S, M.; others. A Review on the Proton-Exchange Membrane Fuel Cell Break-in Physical Principles, Activation Procedures, and Characterization Methods. Journal of Power Sources 2023, 575. [Google Scholar]
- M, K.; Y, Z.; Z. R., Q. Proton Exchange Membrane Fuel Cells: Recent Developments and Future Perspectives. Chemical Communications 2025. [Google Scholar]
- K. S. B., A. A Comprehensive Review of Alkaline Fuel Cells. Future Sustainability 2025, 3(2), 35–46. [Google Scholar] [CrossRef]
- H. A., T; O. M., F; K. A., M. Alkaline Fuel Cells: Status and Prospects. Energy Reports 2023, 9, 6396–6418. [Google Scholar] [CrossRef]
- S, C.; G, Z.; M, G.; others. A New Hybrid Solar Photovoltaic/Phosphoric Acid Fuel Cell and Energy Storage System; Energy and Exergy Performance. International Journal of Hydrogen Energy 2021, 46(11), 8048–8066. [Google Scholar]
- M, B.; J, R.; H, H. Investigation of the Technical Potential of a Hydrogen Powered Phosphoric Acid Fuel Cell (PAFC) for CHP//Journal of Physics: Conference Series; IOP Publishing, 2024; Vol. 2689. [Google Scholar]
- C. R., R; J, A.; L, R. Molten Carbonate Fuel Cells: A Technological Perspective and Review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects; 2021. [Google Scholar]
- C, C.; S, L.; J, G.; others. Review of Molten Carbonate-Based Direct Carbon Fuel Cells. Materials for Renewable and Sustainable Energy 2021, 10, 1–24. [Google Scholar] [CrossRef]
- S. M., K; S. M., A; R, K.; others. Direct Methanol Fuel Cells Parameter Identification with Enhanced Algorithmic Tech-Nique. Energy Conversion and Management: X; 2025. [Google Scholar]
- D. M. A., U; M, I.; S, J.; others. Advances and Challenges of Methanol-Tolerant Oxygen Reduction Reaction Electrocatalysts for the Direct Methanol Fuel Cell. Journal of Energy Chemistry 2023, 77, 499–513. [Google Scholar]
- M, S.; D, Z.; E, C. Solid Oxide Fuel Cell: Decade of Progress, Future Perspectives and Challenges. International Journal of Hydrogen Energy 2021, 46(54), 27643–27674. [Google Scholar] [CrossRef]
- O, C.; F, J.; K. M., Z; others. Advances in Low-Temperature Solid Oxide Fuel Cells: An Explanatory Review. Journal of Power Sources 2024, 610. [Google Scholar]
- R.-P. C., A; G, S.; G, P.; others. Fuel Cell MPPT for Fuel Consumption Optimization. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010; IEEE. [Google Scholar]
- R.-P. C., A; R, G.; M.-S., L; others. A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estimation and Power-Electronics Interaction. IEEE Transactions on Industrial Electronics 2009, 57(6), 1914–1924. [Google Scholar]
- Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M.; Mukundan, R.; Owejan, J. P.; Pharoah, J. G.; Secanell, M.; Zenyuk, I. V. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 2014, 161(12), F1254–F1299. [Google Scholar] [CrossRef]
- D, Z.; M, D.; D, Z.; others. Study of the Modeling Parameter Effects on the Polarization Characteristics of the PEM Fuel Cell. International Journal of Hydrogen Energy 2016, 41(47), 22316–22327. [Google Scholar] [CrossRef]
- L. J., H; L. T., R; A. A., J. Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks. Journal of Power Sources 1998, 70(2), 258–268. [Google Scholar] [CrossRef]
- H, N.; C, W.; S. S., R. Fuel Cells: Promising Devices for Distributed Generation. IEEE Power and Energy Magazine 2006, 4(1), 47–53. [Google Scholar] [CrossRef]
- A, F.; A. A. S. H., E; H, R. A Novel Approach for PEM Fuel Cell Parameter Estimation Using LSHADE-EpSin Op-Timization Algorithm. International Journal of Energy Research 2021, 45(5), 6922–6942. [Google Scholar]
- J, L.; A, D.; M. M., S. Fuel Cell Systems Explained. In J; Wiley: Chichester, UK, 2003. [Google Scholar]
- Gao, H.; Fu, Z.; Pun, C.-M.; Hu, H.; Lan, R. A Multi-Level Thresholding Image Segmentation Based on an Improved Artificial Bee Colony Algorithm. Computers & Electrical Engineering 2018, 70, 931–938. [Google Scholar] [CrossRef]
- Shen, J.; Du, C.; Yan, F.; Chen, B.; Tu, Z. Two Parameters Identification for Polarization Curve Fitting ofPEMFC Based on Genetic Algorithm. Intl J of Energy Research 2022, 46(7), 9621–9633. [Google Scholar] [CrossRef]
- K, P.; K, S.; N, R. A Comprehensive Review on Parameter Estimation Techniques for Proton Exchange Membrane Fuel Cell Modelling. Renewable and Sustainable Energy Reviews 2018, 93, 121–144. [Google Scholar] [CrossRef]
- A. H., J; C. E. A., A; C. J., R; others. PEM Fuel Cell Dynamic Model for Electronic Circuit Simulator//2009 IEEE Electrical Power & Energy Conference (EPEC); IEEE, 2009. [Google Scholar]
- C, D.; W, C.; Z, C.; others. Seeker Optimization Algorithm for Global Optimization: A Case Study on Optimal Modelling of Proton Exchange Membrane Fuel Cell (PEMFC). International Journal of Electrical Power & Energy Systems 2011, 33(3), 369–376. [Google Scholar] [CrossRef]
- S, H.; M, B.; B, H.; others. Parameters Optimization of PEMFC Model Based on Gazelle Optimization Algo-Rithm. International Journal of Hydrogen Energy 2024, 87, 214–226. [Google Scholar]
- M. Z., J; Z. X., J; W. L., Y; others. Parameter Optimization for a PEMFC Model with a Hybrid Genetic Algorithm. International Journal of Energy Research 2006, 30(8), 585–597. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, N. Cuckoo Search Algorithm with Explosion Operator for Modeling Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy 2019, 44(5), 3075–3087. [Google Scholar] [CrossRef]
- M, K.; A, M.; A. A., A; others. Overview and Benchmark Analysis of Fuel Cell Parameters Estimation for Energy Management Purposes. Journal of Power Sources 2018, 380, 92–104. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. On the Facile and Accurate Determination of the Highly Accurate Recent Methods to Optimize the Parameters of Different Fuel Cells: Simulations and Analysis. Energy 2023, 272, 127083. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Khalatbarisoltani, A.; Boulon, L.; Kelouwani, S. Benchmark of Proton Exchange Membrane Fuel Cell Parameters Extraction with Metaheuristic Optimization Algorithms. Energy 2019, 183, 912–925. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Chang, V. An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells. Energies 2021, 14(21), 7115. [Google Scholar] [CrossRef]
- A. M., A; M. M., E; L. M., E. Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation. Sustainability 2023, 15(11). [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Elhoseny, M.; Chakrabortty, R. K.; Ryan, M. J. An Efficient Heap-Based Optimization Algorithm for Parameters Identification of Proton Exchange Membrane Fuel Cells Model: Analysis and Case Studies. International Journal of Hydrogen Energy 2021, 46(21), 11908–11925. [Google Scholar] [CrossRef]
- Huang, S.; Cao, J.; Zhang, X.; Wang, Y. Identification of Optimal Parameters of PEMFC Steady-State Model Using Improved Black Kite Algorithm. International Journal of Hydrogen Energy 2025, 106, 1302–1321. [Google Scholar] [CrossRef]
- W. D., H; M. W., G. Self-Dissimilarity: An Empirical Measure of Complexity; Sante Fe Institute Working Paper, 1997. [Google Scholar]
- R, S.; K, P. Differential Evolution–a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of global optimization 1997, 11, 341–359. [Google Scholar]
- C. U., K; A. T., E; D. S., K. PEM Fuel Cell Modeling Using Differential Evolution. Energy 2012, 40(1), 387–399. [Google Scholar] [CrossRef]
- H. E., H; H, R.; A, F.; others. A Modified Adaptive Guided Differential Evolution Algorithm Applied to Engineering Applications. Engineering Applications of Artificial Intelligence 2022, 113. [Google Scholar]
- Ge, Y.; Zhang, C.; Liu, Q.; Zhang, X.; Chen, J.; Nazir, M. S.; Peng, T. A Novel Metaheuristic Optimizer Based on Improved Adaptive Guided Differential Evolution Algorithm for Parameter Identification of a PEMFC Model. Fuel 2025, 383, 133869. [Google Scholar] [CrossRef]
- Aljaidi, M.; Jangir, P.; Arpita; Agrawal, S. P.; Pandya, S. B.; Parmar, A.; G., G.; Alkoradees, A. F.; Khishe, M.; Jangid, R. A Novel Parrot Optimizer for Robust and Scalable PEMFC Parameter Optimization. Sci Rep 2025, 15(1), 11625. [Google Scholar] [CrossRef] [PubMed]
- L. E., J; C. J., C. Parameter Identification and Sensitivity Analysis of PEM Fuel Cell Systems via Puma Optimizer. Energy Reports 2025, 13, 6328–6348. [Google Scholar] [CrossRef]
- B, Y.; B, L.; Y, Q.; others. Parameter Identification of PEMFC via Feedforward Neural Network-Pelican Optimization Algorithm. Applied Energy 2024, 361. [Google Scholar]
- E.-F. A., A; A. A., M. Red-Billed Blue Magpie Optimizer for Electrical Characterization of Fuel Cells with Prioritizing Estimated Parameters. Technologies 2024, 12(9). [Google Scholar] [CrossRef]
- Ghosh, S.; Routh, A.; Hembrem, P.; Rahaman, M.; Ghosh, A. Dynamic Ant Colony Optimization Algorithm for Parameter Estimation of PEM Fuel Cell. Eng. Res. Express 2024, 6(2), 025014. [Google Scholar] [CrossRef]
- K, P.; V, S.; N, R.; others. Modelling of PEM Fuel Cell for Parameter Estimation Utilizing Clan Co-Operative Based Spotted Hyena Optimizer. Energy Conversion and Management 2024, 309. [Google Scholar]
- S. A., M; A, A.; I, A.; others. Advancements in Model Parameter Estimation for Proton Exchange Membrane Fuel Cells via Enhanced Artificial Hummingbird Algorithm. International Journal of Energy Research 2024, 2024(1). [Google Scholar] [CrossRef]
- T, W.; H, H.; X, L.; others. Optimal Estimation of Proton Exchange Membrane Fuel Cell Model Parameters Based on an Improved Chicken Swarm Optimization Algorithm. International Journal of Green Energy 2023, 20(9), 946–965. [Google Scholar]
- R. A., J; H. H., M; T. R., A; others. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Al-Gorithm. Sustainability 2023, 15(5). [Google Scholar]
- Y, Z.; N, Y. Optimal Parameter Identification of PEMFC Stacks Using Adaptive Sparrow Search Algorithm. Interna-tional journal of hydrogen energy 2021, 46(14), 9541–9552. [Google Scholar]
- K, P.; N, R. Application of Flower Pollination Algorithm for Enhanced Proton Exchange Membrane Fuel Cell Model-Ling. International Journal of Hydrogen Energy 2019, 44(33), 18438–18449. [Google Scholar]
- E.-F. A., A; H. H., M; A. A., M. Semi-Empirical PEM Fuel Cells Model Using Whale Optimization Algorithm. Energy Conversion and Management 2019, 201. [Google Scholar]
- P. J., S; T. P., W; L. Y., B. Fish Migration Optimization Based on the Fishy Biology//2010 Fourth International Conference on Genetic and Evolutionary Computing; IEEE, 2010. [Google Scholar]
- J, Z.; A. M., A; K, S.; others. Improved Fish Migration Optimization Method to Identify PEMFC Parameters. Interna-tional Journal of Hydrogen Energy 2023, 48(52), 20028–20040. [Google Scholar]
- J, W.; W, W.; X, H.; others. Black-Winged Kite Algorithm: A Nature-Inspired Meta-Heuristic for Solving Benchmark Functions and Engineering Problems. Artificial Intelligence Review 2024, 57(4). [Google Scholar]
- W, Z.; Z, Z.; L, W. Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applica-Tions. Engineering Applications of Artificial Intelligence 2020, 87. [Google Scholar]
- W, Z.; N, W.; S, Y. Hybrid Artificial Bee Colony Algorithm for Parameter Estimation of Proton Exchange Membrane Fuel Cell. International Journal of Hydrogen Energy 2013, 38(14), 5796–5806. [Google Scholar] [CrossRef]
- B, Y.; T, Y.; X, Z.; others. Dynamic Leader Based Collective Intelligence for Maximum Power Point Tracking of PV Systems Affected by Partial Shading Condition. Energy Conversion and Management 2019, 179, 286–303. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, R.; Jiang, D.; Wang, Y.; Lin, A.; Wang, J.; Ruan, B. Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Swarm Intelligence Algorithm. Energy 2023, 283, 128935. [Google Scholar] [CrossRef]
- Manoharan, P.; Ravichandran, S.; Kavitha, S.; Tengku Hashim, T. J.; Alsoud, A. R.; Sin, T. C. Parameter Characterization of PEM Fuel Cell Mathematical Models Using an Orthogonal Learning-Based GOOSE Algorithm. Sci Rep 2024, 14(1), 20979. [Google Scholar] [CrossRef] [PubMed]
- S. A., M; A, A.; I, A.; others. Enhancing Model Characterization of PEM Fuel Cells with Human Memory Optimizer Including Sensitivity and Uncertainty Analysis. Ain Shams Engineering Journal 2024, 15(11). [Google Scholar] [CrossRef]
- S. H., M; M. A., S; A, K.; others. Enhancing Parameter Identification for Proton Exchange Membrane Fuel Cell Using Modified Manta Ray Foraging Optimization. Energy Reports 2024, 12, 1987–2013. [Google Scholar] [CrossRef]
- S. H., M; M. A., S; H. M., S; others. Standard and Quasi Oppositional Bonobo Optimizers for Parameter Extraction of PEM Fuel Cell Stacks. Fuel 2023, 340. [Google Scholar]
- I, N.; F, K. A New Optimization Method Based on COOT Bird Natural Life Model. Expert Systems with Applications 2021, 183. [Google Scholar]
- A, F.; H, R.; A. A., G; others. Proton Exchange Membrane Fuel Cell Model Parameters Identification Using Chaotically Based-Bonobo Optimizer. Energy 2023, 268. [Google Scholar]
- H, R.; T, W.; O. A., G; others. Optimal Parameter Identification of a Pem Fuel Cell Using Recent Optimization Algo-Rithms. Energies 2023, 16(14). [Google Scholar]
- H. E., H; H. F., A; S, F.; others. An Efficient Modified Artificial Electric Field Algorithm for Solving Optimization Problems and Parameter Estimation of Fuel Cell. International Journal of Energy Research 2021, 45(14), 20199–20218. [Google Scholar] [CrossRef]
- M. M., A; K. O., M; S. H., M; others. Parameter Estimation of PEMFC Model Based on Harris Hawks’ Optimization and Atom Search Optimization Algorithms. Neural Computing and Applications 2021, 33, 5555–5570. [Google Scholar]
- El-Fergany, A. A. Electrical Characterisation of Proton Exchange Membrane Fuel Cells Stack Using Grasshopper Optimiser. IET Renewable Power Gen 2018, 12(1), 9–17. [Google Scholar] [CrossRef]
- A, F.; A. E., M; A. A., G. A Novel Approach Based on Hybrid Vortex Search Algorithm and Differential Evolution for Identifying the Optimal Parameters of PEM Fuel Cell. Renewable Energy 2020, 146, 1833–1845. [Google Scholar] [CrossRef]
- Z, Z.; Z, S.; X, X.; others. Improved Grey Wolf Optimizer Based on Neighborhood Trust Model for Parameter Identification of PEMFC. International Journal of Hydrogen Energy 2024, 60, 769–779. [Google Scholar] [CrossRef]
- Ebrahimi, S. M.; Hasanzadeh, S.; Khatibi, S. Parameter Identification of Fuel Cell Using Repairable Grey Wolf Optimization Algorithm. Applied Soft Computing 2023, 147, 110791. [Google Scholar] [CrossRef]
- H, Z.; X, W.; Y, L.; others. Model Optimization of a High-Power Commercial PEMFC System via an Improved Grey Wolf Op-Timization Method. Fuel 2024, 357. [Google Scholar]
- L. B., E; D, S. Extreme Offspring Ornamentation in American Coots Is Favored by Selection within Families, Not Benefits to Conspecific Brood Parasites. Proceedings of the National Academy of Sciences 2020, 117(4), 2056–2064. [Google Scholar]
- G. E., A; K. M., F; G. S. S., M; others. Performance Assessment of Solar Generating Units Based on Coot Bird Me-Taheuristic Optimizer. IEEE Access 2021, 9, 111616–111632. [Google Scholar]
- W, Z.; L, W.; S, M. Artificial Hummingbird Algorithm: A New Bio-Inspired Optimizer with Its Engineering Applica-Tions. Computer Methods in Applied Mechanics and Engineering 2022, 388. [Google Scholar]
- D. A., K; P. D., K. Bonobo Optimizer (BO): An Intelligent Heuristic with Self-Adjusting Parameters over Continuous Spaces and Its Applications to Engineering Problems. Applied Intelligence 2022, 52(3), 2942–2974. [Google Scholar]
- Kouache, A. Z.; Djafour, A.; Danoune, M. B.; Benzaoui, K. M. S.; Gougui, A. Accurate Key Parameters Estimation of PEM Fuel Cells Using Self-Adaptive Bonobo Optimizer. Computers & Chemical Engineering 2025, 192, 108894. [Google Scholar] [CrossRef]
- H, Z.; Z, G.; Y, P.; others. A Synergy of the Adaptive Whale Optimization Algorithm and Differential Evolution for Abrupt Motion Tracking. Applied Soft Computing 2023, 144. [Google Scholar]
- Sun, Z.; Wang, Y.; Xie, X.; Yang, Q.; Bi, Y.; Sun, Z. An Event-Triggered and Dimension Learning Scheme WOA for PEMFC Modeling and Parameter Identification. Energy 2024, 305, 132352. [Google Scholar] [CrossRef]
- B, D.; M, S.; R, S. Interconnected Multi-Machine Power System Stabilizer Design Using Whale Optimiza-Tion Algorithm. Protection and Control of Modern Power Systems 2019, 4(1), 1–11. [Google Scholar]
- H. R., K; R. T., A. GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Be-Yond. Evolving Systems 2024, 15(4), 1249–1274. [Google Scholar]
- Y, Y.; Q, Y.; J, R.; others. Attack-Defense Strategy Assisted Osprey Optimization Algorithm for PEMFC Parameters Identi-Fication. Renewable Energy 2024, 225. [Google Scholar]
- Ismaeel, A. A. K.; Houssein, E. H.; Khafaga, D. S.; Aldakheel, E. A.; Said, M. Performance of Rime-Ice Algorithm for Estimating the PEM Fuel Cell Parameters. Energy Reports 2024, 11, 3641–3652. [Google Scholar] [CrossRef]
- Abbassi, R.; Saidi, S.; Abbassi, A.; Jerbi, H.; Kchaou, M.; Alhasnawi, B. N. Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm. Mathematics 2023, 11(6), 1298. [Google Scholar] [CrossRef]
- B, A.; N, K.; S, B.; others. Puma Optimizer (PO): A Novel Metaheuristic Optimization Algorithm and Its Application in Machine Learning. Cluster Computing 2024, 27(4), 5235–5283. [Google Scholar] [CrossRef]
- S, Z.; T, Z.; S, M.; others. Dandelion Optimizer: A Nature-Inspired Metaheuristic Algorithm for Engineering Applications. Engineering Applications of Artificial Intelligence 2022, 114. [Google Scholar]
- N, A.; S, K.; M. T., F; others. Developing Hybrid Demand Response Technique for Energy Management in Microgrid Based on Pelican Optimization Algorithm. Electric Power Systems Research 2023, 214. [Google Scholar]
- H. F., A; K, H.; H. E., H; others. Archimedes Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems. Applied intelligence 2021, 51, 1531–1551. [Google Scholar]
- A, C.; P. H., B. The Effective Parameter Identification for a PEMFC Based on Archimedes Optimization Algorithm. International Journal of Hydrogen Energy 2024. [Google Scholar]
- A, Y. AEFA: Artificial Electric Field Algorithm for Global Optimization. Swarm and Evolutionary Computation 2019, 48, 93–108. [Google Scholar] [CrossRef]
- M. A., S; S. H., M; Z. M., E; others. A Modified Slime Mold Algorithm for Parameter Identification of Hydro-Gen-Powered Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy 2024, 86, 853–874. [Google Scholar]
- Elfar, M. H.; Fawzi, M.; Serry, A. S.; Elsakka, M.; Elgamal, M.; Refaat, A. Optimal Parameters Identification for PEMFC Using Autonomous Groups Particle Swarm Optimization Algorithm. International Journal of Hydrogen Energy 2024, 69, 1113–1128. [Google Scholar] [CrossRef]
- S, S.; S, M.; A. B., N; others. Precise Parameter Identification of a PEMFC Model Using a Robust Enhanced Salp Swarm Algorithm. International Journal of Hydrogen Energy 2024, 71, 937–951. [Google Scholar] [CrossRef]
- B, L.; K. M., A; A, B. Precise Parameter Estimation of PEM Fuel Cell via Weighted Mean of Vectors Op-Timizer. Journal of Computational Electronics 2024, 23(5), 1039–1048. [Google Scholar]
- C. S., A. Estimation of PEMFC Design Parameters with Social Learning-Based Optimization. Electrical Engineering 2024, 106(4), 4457–4468. [Google Scholar] [CrossRef]
- I, A.; H. A., A; S, N.; others. INFO: An Efficient Optimization Algorithm Based on Weighted Mean of Vectors. Expert Systems with Applications 2022, 195. [Google Scholar]
- D, Z.; S, W.; C, Z.; others. Human Memory Optimization Algorithm: A Memory-Inspired Optimizer for Global Optimization Problems. Expert Systems with Applications 2024, 237. [Google Scholar]
- L, W.; Q, C.; Z, Z.; others. Artificial Rabbits Optimization: A New Bio-Inspired Meta-Heuristic Algorithm for Solving En-Gineering Optimization Problems. Engineering Applications of Artificial Intelligence 2022, 114. [Google Scholar]
- Sun, Z.; Sun, J.; Xie, X.; An, Z.; Hong, Y.; Sun, Z. Multi-Population Mutative Moth-Flame Optimization Algorithm for Modeling and the Identification of PEMFC Parameters. Renewable Energy 2025, 240, 122238. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Abualigah, L.; Issa, M.; Abd El-Latif, A. A. Optimal Parameters Extracting of Fuel Cell Based on Gorilla Troops Optimizer. Fuel 2023, 332, 126162. [Google Scholar] [CrossRef]
- Chen, Y.; Pi, D.; Wang, B.; Chen, J.; Xu, Y. Bi-Subgroup Optimization Algorithm for Parameter Estimation of a PEMFC Model. Expert Systems with Applications 2022, 196, 116646. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abdel-Fatah, L.; Sharawi, M.; Sallam, K. M. Improved Metaheuristic Algorithms for Optimal Parameters Selection of Proton Exchange Membrane Fuel Cells: A Comparative Study. IEEE Access 2023, 11, 7369–7397. [Google Scholar] [CrossRef]
- Özdemir, M. T. Optimal Parameter Estimation of Polymer Electrolyte Membrane Fuel Cells Model with Chaos Embedded Particle Swarm Optimization. International Journal of Hydrogen Energy 2021, 46(30), 16465–16480. [Google Scholar] [CrossRef]
- Rizk-Allah, R. M.; El-Fergany, A. A. Artificial Ecosystem Optimizer for Parameters Identification of Proton Exchange Membrane Fuel Cells Model. International Journal of Hydrogen Energy 2021, 46(75), 37612–37627. [Google Scholar] [CrossRef]
- Kamel, S.; Jurado, F.; Sultan, H.; Menesy, A. Tree Growth Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell Models. IJIMAI 2020, 6(2), 11. [Google Scholar] [CrossRef]
- S, X.; Y, W.; Z, W. Parameter Estimation of Proton Exchange Membrane Fuel Cells Using Eagle Strategy Based on JAYA Algorithm and Nelder-Mead Simplex Method. Energy 2019, 173, 457–467. [Google Scholar] [CrossRef]



| Fitness function | Fundamental equations | Optimization Objective | |
| Sum of Squared Errors (SSE)[51] | Minimizing the sum of squared errors between predicted and observed values. | ||
| Mean square error (MSE)[52] | Minimize the average squared difference between predicted and observed values. | ||
| Root mean square error (RMSE)[46] | Minimize the square root of the mean squared error, reducing large prediction errors. | ||
| Normalized root mean square error (NRMSE)[53] | Measures error relative to the range or mean of observed values. | ||
| Absolute error (AE) [54] | Measures the absolute difference between predicted and observed values. | ||
| Mean absolute error (MAE)[48] | Evaluates the average of absolute differences between predicted and observed values. |
| PEMFCs’ type | Power (W) | N | A(cm2) | l (um) | Jmax (mA/cm2) | T(K) | (bar) | (bar) |
|---|---|---|---|---|---|---|---|---|
| Ballard Mark V [53] | 5000 | 35 | 50.6 | 178 | 1500 | 343 | 1 | 1 |
| SR-12 Modular[55] | 500 | 48 | 62.5 | 25 | 672 | 323 | 1.47628 | 0.2095 |
| NedStack PS 6KW[51] | 6000 | 65 | 240 | 178 | 937 | 343 | 0.5–5 | 0.5–5 |
| BCS 500W[47] | 500 | 32 | 64 | 178 | 469 | 333 | 1 | 0.2095 |
| 250W Stack[56] | 250 | 24 | 27 | 178 | 680 | 343 | 1 | 1 |
| Temasek 1 kW[57] | 1000 | 20 | 150 | 51 | 1500 | 323 | 0.5 | 0.5 |
| Horizon H-12[58] | 12 | 13 | 8.1 | 25 | 246.9 | 302.15 | 0.4935 | 1 |
| 30kw stack[59] | 30000 | 30 | 250 | 32 | 2.424 | 338.15 | 1.577 | 1.678 |
| Parameter | Low | High |
|---|---|---|
| -1.1997 | -0.8532 | |
| ×10-3 | 1.00 | 5.00 |
| ×10-5 | 3.60 | 9.80 |
| ×10-5 | -26.00 | -9.54 |
| ×10-5 | 13.00 | 23.00 |
| 0.10 | 0.80 | |
| 0.0136 | 0.5000 |
| Years | Methods | Parameters | SSE | ||||||
|---|---|---|---|---|---|---|---|---|---|
| ×10-3 | ×10-5 | ×10-4 | |||||||
| 2025 | IAGDE[64] | -0.8946 | 2.5300 | 3.6100 | -0.0009 | 3.56382 | 15200 | 0.0920 | 0.00104 |
| 2025 | PO[65] | -1.1997 | 3.5758 | 3.6000 | -1.6729 | 24.0000 | 1.0000 | 0.0159 | 0.81280 |
| 2025 | PO[66] | -0.9382 | 3.1690 | 8.3200 | -1.7000 | 14.4391 | 1.0000 | 0.0138 | 0.14860 |
| 2024 | FNN-POA[67] | -0.8851 | 2.7882 | 6.3684 | -1.7105 | 15.6807 | 5.1874 | 0.0168 | - |
| 2024 | RBMO[68] | -1.0006 | 3.8364 | 9.7953 | -1.6283 | 22.9999 | 1.0000 | 0.0136 | 0.85360 |
| 2024 | DACO[69] | -1.0950 | 3.4120 | 7.9310 | -0.9540 | 14.0800 | 0.8000 | 0.0182 | 0.00001 |
| 2024 | SHO[70] | -1.1993 | 3.6200 | 3.6704 | -1.7840 | 19.6862 | 3.0390 | 0.0665 | 0.00001 |
| 2023 | CBO[57] | -1.1788 | 2.8743 | 3.6400 | -1.1950 | 12.0800 | 8.0000 | 0.0136 | 0.00060 |
| 2023 | IAHA[71] | -1.0130 | 4.0000 | 8.9800 | -1.6300 | 23.0000 | 1.0000 | 0.0136 | 0.85360 |
| 2023 | ICSO[72] | -0.9600 | - | 4.2500 | -1.7000 | 23.0000 | 1.0000 | 0.0140 | 0.85300 |
| 2023 | ARO[73] | -1.1589 | 3.5208 | 4.0526 | -1.6725 | 23.9900 | 1.0000 | 0.0159 | 0.81391 |
| 2021 | ASSA[74] | -1.1100 | 3.1900 | 7.1700 | -1.5970 | 22.0000 | 1.0000 | 0.0110 | 0.82000 |
| 2019 | SSO[21] | -1.1827 | 3.7080 | 9.3600 | -1.1925 | 11.7603 | 7.8773 | 0.0136 | 0.00210 |
| 2019 | CS-EO[52] | -0.9728 | 3.4480 | 8.3832 | -1.1328 | 21.6995 | 8.0000 | 0.0136 | 0.00240 |
| 2019 | FPA[75] | -1.0257 | 3.4000 | 6.7952 | -1.2850 | 15.6446 | 5.2906 | 0.0614 | 0.00060 |
| 2019 | WOA[76] | -1.1978 | 4.4183 | 9.7214 | -1.6273 | 23.0000 | 1.0020 | 0.0136 | 0.02390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
