Submitted:
08 February 2026
Posted:
10 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Modified Atmosphere Packaging (MAP)
2.2. Quantification of β-C from β-C:β-CD Complexes
2.3. Determination of Relative Humidity (RH)
2.4. Color Determination
2.5. Physicochemical Characterization of Fresh-Cut Mango
2.6. Total Phenols in Fresh-Cut Mango
2.7. Antioxidant Activity
2.8. Erythroprotective Effect
2.9. Microbiological Analysis
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Materials
4.3. Preparation of Mango
4.4. Preparation of Inclusion Complex
4.5. Modified Atmosphere Packaging (MAP)
4.6. Quantification of β-C in the Complex
4.7. Quantification of Relative Humidity in Packaging
4.8. Color Determination
4.9. Physicochemical Characterization of Fresh-Cut Mango
4.10. Total Phenols of Fresh-Cut Mango
4.11. Antioxidant Activity
4.11.1. ABTS
4.11.2. DPPH
4.11.3. FRAP
4.12. Eritroprotective Effect
4.13. Microbiological Analysis
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MAP | Modified Atmosphere Packaging |
| β-C | β-carotene |
| GRAS | Generally Recognized as Safe |
| β-CD | β -cyclodextrin |
| PET | Polyethylene terephthalate |
| RH | Relative humidity |
| M | Sample of mango without MAP and without complex |
| MC | Sample of mango without MAP and with complex β-C:β-CD |
| MMA | Sample of mango with MAP and without complex β-C:β-CD |
| MMAC | Sample of mango with MAP and with complex β-C:β-CD |
| AOAC | Association of Official Analytical Chemistry |
| ABTS | 2,2′-azinobis(3-ethylbenzothiazoline)-6-sulfonic |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| FRAP | Ferric Reducing Antioxidant Power |
| Trolox | 6-hydroxy -2,5,7,8-tetramethylchroman-2-carboxylic acid |
| TPTZ | 2,4,6-Tripridil-s-triazine |
| AAPH | 2,2′-Azobis(2-amidinopropane) dihydrochloride |
| PS | Physiological solution |
| A | Absorbance |
| C+ | Positive control |
| rpm | Revolutions Per Minute |
| TSS | total soluble solids |
| TA | Titratable acidity |
| HAT | Hydrogen atom transfer |
| SET | Single electron transfer |
References
- Corbo, M.; Campaniello, D.; Speranza, B.; Bevilacqua, A.; Sinigaglia, M. Non-Conventional Tools to Preserve and Prolong the Quality of Minimally-Processed Fruits and Vegetables. Coatings 2015, 5, 931–961. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K.; Hernandez, F. Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Scientific Reports 2021, 11. [Google Scholar] [CrossRef]
- Iturralde-García, R.D.; Cinco-Moroyoqui, F.J.; Martínez-Cruz, O.; Ruiz-Cruz, S.; Wong-Corral, F.J.; Borboa-Flores, J.; Cornejo-Ramírez, Y.I.; Bernal-Mercado, A.T.; Del-Toro-Sánchez, C.L. Emerging Technologies for Prolonging Fresh-Cut Fruits’ Quality and Safety during Storage. Horticulturae 2022, 8, 731. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Rastegar, S. Preservation of mango fruit with guar-based edible coatings enriched with Spirulina platensis and Aloe vera extract during storage at ambient temperature. Scientia Horticulturae 2020, 265, 109258. [Google Scholar] [CrossRef]
- Singh, A.K.; Rawat, M.; Mani, G.; Gautam, R.; Raj, R.; Shah, I.; Pandey, A.K.; Maurya, D.; Singh, S.N.; Kumar, V. Postharvest Physiology of Mango Crops: Understanding Ripening, Quality, and Storage Strategies. Applied Fruit Science 2025, 67, 1–14. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition 2017, 58, 808–831. [Google Scholar] [CrossRef] [PubMed]
- Puebla-Duarte, A.L.; Santos-Sauceda, I.; Rodríguez-Félix, F.; Iturralde-García, R.D.; Fernández-Quiroz, D.; Pérez-Cabral, I.D.; Del-Toro-Sánchez, C.L. Active and Intelligent Packaging: A Review of the Possible Application of Cyclodextrins in Food Storage and Safety Indicators. Polymers 2023, 15, 4317. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, H.M.; Pasquali, M.B.; dos Anjos, A.I.; Sarinho, A.M.; de Melo, E.D.; Andrade, R.; Batista, L.; Lima, J.; Diniz, Y.; Barros, A. Innovative and Sustainable Food Preservation Techniques: Enhancing Food Quality, Safety, and Environmental Sustainability. Sustainability 2024, 16, 8223. [Google Scholar] [CrossRef]
- Kerry, J.; Papkovsky, D. Development and use of non-destructive, continuous assessment, chemical oxygen sensors in packs containing oxygen sensitive foodstuffs. Research Advances in Food Science 2002, 3, 121–140. [Google Scholar]
- Czerwiński, K.; Rydzkowski, T.; Wróblewska-Krepsztul, J.; Thakur, V.K. Towards Impact of Modified Atmosphere Packaging (MAP) on Shelf-Life of Polymer-Film-Packed Food Products: Challenges and Sustainable Developments. Coatings 2021, 11, 1504. [Google Scholar] [CrossRef]
- Fuenmayor, C.A.; Baron-Cangrejo, O.G.; Salgado-Rivera, P.A. Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. Polysaccharides 2021, 2, 454–476. [Google Scholar] [CrossRef]
- Rohmah, M.; Rahmadi, A.; Raharjo, S. Bioaccessibility and antioxidant activity of β-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon 2022, 8, e08913. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, L.; Peng, L.; Du, J.; Lan, M.; Cheng, Y.; Ma, L.; Zhang, Y. Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chemistry 2022, 378, 132088. [Google Scholar] [CrossRef]
- Pinna, N.; Ianni, F.; Selvaggini, R.; Urbani, S.; Codini, M.; Grispoldi, L.; Cenci-Goga, B.T.; Cossignani, L.; Blasi, F. Valorization of Pumpkin Byproducts: Antioxidant Activity and Carotenoid Characterization of Extracts from Peel and Filaments. Foods 2023, 12, 4035. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, D.; Singh, H.; Ye, A. Improving solubility and stability of β-carotene by microencapsulation in soluble complexes formed with whey protein and OSA-modified starch. Food Chemistry 2021, 352, 129267. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, F.; Dai, Y.; Zhang, J.; Shi, Y.; Lai, D.; Sriboonvorakul, N.; Hu, J. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhu, H.; Wang, S.; Xing, J. Inclusion Complexes of Lycopene and β-Cyclodextrin: Preparation, Characterization, Stability and Antioxidant Activity. Antioxidants 2019, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Csikós, E.; Andres, E.V.; Bencsik, T.; Takátsy, A.; Gulyás-Fekete, G.; Turcsi, E.; Deli, J.; Szőke, É.; Kemény, Á.; Payrits, M.; Szente, L.; Kocsis, M.; Molnár, P.; Helyes, Z. Analyzing the Carotenoid Composition of Melilot (Melilotus officinalis (L.) Pall.) Extracts and the Effects of Isolated (All-E)-lutein-5,6-epoxide on Primary Sensory Neurons and Macrophages. Molecules 2021, 26, 503. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, S.; Chen, Y.; Wei, Y.; Shao, X. Comparison of Inhibitory Effects of Cinnamic Acid, β-Cyclodextrin, L-Cysteine, and Ascorbic Acid on Soluble and Membrane-Bound Polyphenol Oxidase in Peach Fruit. Foods 2022, 12, 167. [Google Scholar] [CrossRef]
- Tian, Y.; Yuan, C.; Cui, B.; Lu, L.; Zhao, M.; Liu, P.; Wu, Z.; Li, J. Pickering emulsions stabilized by β-cyclodextrin and cinnamaldehyde essential oil/β-cyclodextrin composite: A comparison study. Food Chemistry 2022, 377, 131995. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, T.; Chai, X.; Duan, X.; He, D.; Yu, H.; Liu, X.; Tao, Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022, 12, 45. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef]
- Adamkiewicz, L.; Szeleszczuk, Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef]
- Sarabia-Vallejo, Á.; Caja, M.d.M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and their uses: a review. Process Biochemistry 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Szejtli, J.; Szente, L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics 2005, 61, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Arruda, T.R.; Marques, C.S.; Soares, N.F.F. Native Cyclodextrins and Their Derivatives as Potential Additives for Food Packaging: A Review. Polysaccharides 2021, 2, 825–842. [Google Scholar] [CrossRef]
- Fenyvesi, É.; Vikmon, M.; Szente, L. Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations. Critical Reviews in Food Science and Nutrition 2016, 56, 1981–2004. [Google Scholar] [CrossRef] [PubMed]
- Kays, S.J. Postharvest Physiology of Perishable Plant Products; Springer US, 1991. [Google Scholar]
- Kittur, F.; Saroja, N.; Habibunnisa; Tharanathan, R. Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango. European Food Research and Technology 2001, 213, 306–311. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Scientia Horticulturae 2012, 144, 172–178. [Google Scholar] [CrossRef]
- de Oliveira, K.Á.R.; da Conceição, M.L.; de Oliveira, S.P.A.; Lima, M.d.S.; de Sousa Galvão, M.; Madruga, M.S.; Magnani, M.; de Souza, E.L. Postharvest quality improvements in mango cultivar Tommy Atkins by chitosan coating with Mentha piperita L. essential oil. The Journal of Horticultural Science and Biotechnology 2019, 95, 260–272. [Google Scholar] [CrossRef]
- Ramful, D.; Tarnus, E.; Aruoma, O.I.; Bourdon, E.; Bahorun, T. Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International 2011, 44, 2088–2099. [Google Scholar] [CrossRef]
- Islam, M.K.; Khan, M.Z.H.; Sarkar, M.A.R.; Absar, N.; Sarkar, S.K. Changes in Acidity, TSS, and Sugar Content at Different Storage Periods of the Postharvest Mango (Mangifera indica L.) Influenced by Bavistin DF. International Journal of Food Science 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Singh, Z.; Singh, R.K.; Sane, V.A.; Nath, P. Mango - Postharvest Biology and Biotechnology. Critical Reviews in Plant Sciences 2013, 32, 217–236. [Google Scholar] [CrossRef]
- dos Santos, L.F.; Vilvert, J.C.; de Souza, T.A.; Alves, J.d.S.; Ribeiro, T.d.S.; Neuwald, D.A.; de Freitas, S.T. Minimum O2 levels during storage to inhibit aerobic respiration and prolong the postharvest life of ‘Tommy Atkins’ mangoes produced in different growing seasons. Scientia Horticulturae 2023, 318, 112094. [Google Scholar] [CrossRef]
- Perez-Perez, L.M.; Armenta-Villegas, L.; Santacruz-Ortega, H.; Gutiérrez-Lomelí, M.; Aguilar, J.A.; Reynoso-Marin, F.J.; Robles-García, M.A.; Robles-Zepeda, R.E.; Ruiz-Cruz, S.; Del-Toro-Sánchez, C.L. Characterization of Anemopsis californica essential oil–β-cyclodextrin inclusion complex as antioxidant prolonged-release system. Chemical Papers 2017, 71, 1331–1342. [Google Scholar] [CrossRef]
- Caratan, A.G. Process for the Substantial Prolongation of the Storage Life of Grapes. U.S. Patent 9,295,266, 2016. [Google Scholar]
- Javed, S.; Fu, H.; Ali, A.; Nadeem, A.; Amin, M.; Razzaq, K.; Ullah, S.; Rajwana, I.A.; Nayab, S.; Ziogas, V. Comparative response of mango fruit towards pre-and post-storage quarantine heat treatments. Agronomy 2022, 12, 1476. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Q.; Cao, J.; Jiang, W. Effects of chitosan coating on postharvest quality of mango (Mangifera indica L. Cv. Tainong) Fruits. Journal of Food Processing and Preservation 2008, 32, 770–784. [Google Scholar] [CrossRef]
- Win, S.T.; Setha, S. Enhancement of Anti-Inflammatory and Antioxidant Activities of Mango Fruit by Pre- and Postharvest Application of Salicylic Acid. Horticulturae 2022, 8, 555. [Google Scholar] [CrossRef]
- Vanoli, M.; Rizzolo, A.; Lovati, F.; Spinelli, L.; Levoni, P.; Torricelli, A.; Cortellino, G. Non-Destructive Prediction of Carotenoids, Ascorbic Acid, and Total Phenols Contents in ‘Tommy Atkins’ Mangoes Using Absorption and Scattering Properties Measured by Time-Resolved Reflectance Spectroscopy. Agriculture 2024, 14, 1902. [Google Scholar] [CrossRef]
- Pérez-Meza, N.B.; Ayala-Tafoya, F.; Vélez-de la Rocha, R.; López-Orona, C.A.; Martínez-Gallardo, J.Á.; Muy-Rangel, M.D.; San-Martín-Hernández, C. The Nutritional, Mineral, and Nutraceutical Quality Is Differentially Affected by the Mango Cultivar. Horticulturae 2024, 10, 1082. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Tornese, R.; Mita, G.; Durante, M. Bioactive Compounds and Antioxidant Activities in Different Fractions of Mango Fruits (Mangifera indica L., Cultivar Tommy Atkins and Keitt). Antioxidants 2022, 11, 484. [Google Scholar] [CrossRef]
- Puebla-Duarte, A.L.; Bernal-Mercado, A.T.; Santos-Sauceda, I.; Acosta-Elias, M.; Fernández-Quiroz, D.; Burruel-Ibarra, S.E.; Ornelas-Paz, J.d.J.; Pérez-Cabral, I.D.; Rodríguez-Félix, F.; Iturralde-García, R.D. The Characterization and Antioxidant and Erythroprotective Effects of β-Carotene Complexed in β-Cyclodextrin. International Journal of Molecular Sciences 2025, 26, 3902. [Google Scholar] [CrossRef] [PubMed]
- Iturralde-García, R.D.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J.; Riudavets, J.; Del Toro-Sánchez, C.L.; Rueda-Puente, E.O.; Martínez-Cruz, O.; Wong-Corral, F.J. Effect of controlled atmospheres on the insect Callosobruchus maculatus Fab. in stored chickpea. Journal of Stored Products Research 2016, 69, 78–85. [Google Scholar] [CrossRef]
- AOAC, Official Methods of Analysis of the Association of Official Analytical Chemistry, 18th ed.; Association Of Official Analytical Chemists: Gaithersburg, MD, USA, 2005.
- Ayón-Reyna, L.E.; Tamayo-Limón, R.; Cárdenas-Torres, F.; López-López, M.E.; López-Angulo, G.; López-Moreno, H.S.; López-Cervántes, J.; López-Valenzuela, J.A.; Vega-García, M.O. Effectiveness of hydrothermal-calcium chloride treatment and chitosan on quality retention and microbial growth during storage of fresh-cut papaya. Journal of Food Science 2015, 80, C594–C601. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Loarca-Piña, G.; Mendoza, S.; Ramos-Gómez, M.; Reynoso, R. Antioxidant, Antimutagenic, and Antidiabetic Activities of Edible Leaves from Cnidoscolus chayamansa Mc. Vaugh. Journal of Food Science 2010, 75. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry 1996, 239, 70–76. [Google Scholar] [CrossRef]
- González-Vega, R.I.; Cárdenas-López, J.L.; López-Elías, J.A.; Ruiz-Cruz, S.; Reyes-Díaz, A.; Perez-Perez, L.M.; Cinco-Moroyoqui, F.J.; Robles-Zepeda, R.E.; Borboa-Flores, J.; Del-Toro-Sánchez, C.L. Optimization of growing conditions for pigments production from microalga Navicula incerta using response surface methodology and its antioxidant capacity. Saudi Journal of Biological Sciences 2021, 28, 1401–1416. [Google Scholar] [CrossRef]
- NORMA Oficial Mexicana. NOM-110-SSA1-1994. Bienes y Servicios. Preparación y Dilución de Muestras de Alimentos Para su Análisis Microbiológico; Diario Oficial de la Federación DV: Ciudad de México, Mexico, 1994; Vol. 11. [Google Scholar]
- NORMA Oficial Mexicana. NOM-092-SSA1-1994. Bienes y Servicios. Método Para la Cuenta de Bacterias Aerobias en Placa; Diario Oficial de la Federación: Ciudad de México, Mexico, 1994; Vol. 12. [Google Scholar]
- NORMA Oficial Mexicana. NOM-113-SSA1-1994, Bienes y Servicios. Método Para la Cuenta de Microorganismos Coliformes Totales en Placa; Diario Oficial de la Federación: Ciudad de México, Mexico, 1995. [Google Scholar]
- NORMA Oficial Mexicana. NOM-111-SSA1-1994, Bienes y Servicios. Método Para la Cuenta de Mohos y Levaduras en Alimentos; Diario Oficial de la Federación: Ciudad de México, Mexico, 1994. [Google Scholar]






| mg of β-C in the complex β-C:β-CD | % β-C in the complex | % β-C released |
|||||||
| Day | 0 | 1 | 2 | 3 | 4 | 5 | 6 | ||
| MC | 329.8±0.03Aa | 304.6±2.23B b | 288.4±3.65 B c | 251.1±1.87 B d | 230.6±2.09 Be | 221.9±0.08 Bf | 207.2±1.03 Bg | 62.8±1.23B | 37.1±1.2A |
| MMAC | 329.8±0.03Ba | 315.6±1.42 Ab | 297.2±1.19 Ac | 278.8±0.71 Ad | 265.1±2.04Ae | 242.9±0.88 Af | 233.6±1.02 Ag | 70.8±0.09A | 29.2±0.1B |
| Sample | Days | L* | a* | b* |
| Determination in the fresh-cut mango | ||||
| M | 0 | 54.05 ± 0.89 a | 6.81 ± 0.19 a | 34.45 ± 1.42 a |
| 2 | 43.16 ± 0.97 b | 3.86 ± 0.77 b | 20.66 ± 1.37 b | |
| 4 | 31.41 ± 0.89 c | 1.97 ± 0.04 c | 18.92 ± 1.58 c | |
| 6 | 22.50 ± 0.60 d | 0.78 ± 0.52 d | 16.32 ± 1.49 d | |
| MMA | 0 | 54.05 ± 0.89 a | 6.81 ± 0.19 a | 34.45 ± 1.42 a |
| 2 | 49.7 ± 1.65 b | 4.68 ± 1.38 b | 31.29 ± 2.31 b | |
| 4 | 47.52 ± 1.05 ab | 3.64 ± 0.38 bc | 27.76 ± 2.08 c | |
| 6 | 45.37 ± 0.69 c | 3.21 ± 0.74 c | 24.85 ± 1.09 d | |
| Determination in the β-C:β-CD complex | ||||
| MC | 0 | 81.05 ± 1.04a | 15.40 ± 0.41 d | 11.43 ± 0.34 d |
| 2 | 82.53 ± 2.47 ab | 17.36 ± 1.73 c | 13.35 ± 0.63 c | |
| 4 | 83.47 ± 1.12 c | 18.21 ± 0.41 b | 15.21 ± 0.36 b | |
| 6 | 84.83 ± 0.59 cd | 21.33 ± 0.62 a | 19.23 ± 0.45 a | |
| MMAC | 0 | 81.05 ± 1.04 a | 15.40 ± 0.51 bc | 11.43 ± 0.34 d |
| 2 | 81.87 ± 1.03 a | 16.50 ± 1.42 b | 12.56 ± 0.36 c | |
| 4 | 82.34 ± 1.07 ab | 17.45 ± 1.57 ab | 13.84 ± 0.16 b | |
| 6 | 83.96 ± 1.02 bc | 18.48 ± 2.28 a | 16.12 ± 1.06 a | |
| Sample | Days | TA % |
TSS (°Brix) | pH | Firmness (N) |
| M | 0 | 0.17 ± 0.001d | 12.3 ± 0.09 d | 4.83 ± 0.02 a | 17.88 ± 1.32 a |
| 2 | 0.32 ± 0.003c | 14.1 ± 0.71 c | 4.72 ± 0.01 b | 14.03 ± 0.87 b | |
| 4 | 0.64 ± 0.009 b | 15.4 ± 1.01 bc | 4.67 ± 0.01 c | 11.33 ± 1.09 c | |
| 6 | 0.85 ± 0.060 a | 17.7 ± 2.35 a | 4.50 ± 0.09 d | 9.03 ± 0.23 d | |
| MMA | 0 | 0.17 ± 0.001 c | 12.3 ± 0.09 c | 4.83 ± 0.08 a | 17.88 ± 1.32 a |
| 2 | 0.21± 0.005 b | 13.4 ± 0.07 b | 4.83 ± 0.01 a | 16.98 ± 1.11 a | |
| 4 | 0.29 ± 0.003 b | 14.06 ± 1.01 ab | 4.81 ± 0.02 b | 16.03 ± 0.73 a | |
| 6 | 0.32 ± 0.009 a | 15.02 ± 1.14 a | 4.80 ± 0.02 b | 14.21 ± 1.07 b | |
| MC | 0 | 0.17 ± 0.001 d | 12.3 ± 0.09 d | 4.83 ± 0.08 a | 17.88 ± 1.32 a |
| 2 | 0.35 ± 0.007 c | 14.76 ± 1.41 bc | 4.76 ± 0.03 b | 13.07 ± 1.24 b | |
| 4 | 0.57 ± 0.002 b | 16.01 ± 2.31 ab | 4.67 ± 0.06 c | 10.33 ± 0.99 c | |
| 6 | 0.83 ± 0.008 a | 18.2 ± 2.18 a | 4.55 ± 0.01 d | 8.76 ± 0.52 d | |
| MMAC | 0 | 0.17 ± 0.001 d | 12.3 ± 0.09 c | 4.83 ± 0.08 a | 17.88 ± 1.32 a |
| 2 | 0.20 ± 0.019 c | 13.88 ± 0.99 b | 4.80 ± 0.02 a | 17.32 ± 2.01 a | |
| 4 | 0.27 ± 0.021 b | 14.01 ± 1.57 ab | 4.80 ± 0.01a | 16.86 ± 1.06 a | |
| 6 | 0.31 ± 0.002 a | 14.08 ± 1.33 a | 4.78 ± 0.06 b | 15.34 ± 0.97 ab |
| Sample | Day | ABTS (%) | DPPH (%) | FRAP (mMol ET/mL) |
| Determination in the fresh-cut mango | ||||
| M | 0 | 35.17 ± 2.67 a | 11.29 ± 3.51 a | 6353.66 ± 346.59 a |
| 2 | 28.55 ± 0.93 b | 9.38 ± 3.09 ab | 5845.67 ± 413.55 b | |
| 4 | 19.31 ± 1.48 c | 7.31 ± 1.78 b | 4259.52 ± 394.40 c | |
| 6 | 14.72 ± 3.22 d | 4.73 ± 1.25 c | 3360.75 ± 846.56 d | |
| MMA | 0 | 35.17 ± 2.67 a | 11.29 ± 3.51 a | 6353.66 ± 346.59 a |
| 2 | 35.55 ± 1.42 a | 10.99 ± 1.01 a | 6154.97 ± 301.06 a | |
| 4 | 32.22 ± 2.08 b | 9.71 ± 0.32 ab | 6033.12 ± 104.55 a | |
| 6 | 28.09 ± 1.70 c | 8.20 ± 0.81 b | 4896.19 ± 279.12 b | |
| MC | 0 | 35.17 ± 2.67 a | 11.29 ± 3.51 a | 6353.66 ± 346.59 a |
| 2 | 29.21 ± 1.74 b | 10.32 ± 1.11 a | 5723.51 ± 205.11 b | |
| 4 | 21.32 ± 0.99 c | 8.21 ± 1.04 b | 4356.98 ± 173.02 c | |
| 6 | 15.76 ± 0.45 d | 3.94 ± 0.85 c | 3587.05 ± 345.66 d | |
| MMAC | 0 | 35.17 ± 2.67 a | 11.29 ± 3.51 a | 6353.66 ± 346.59 a |
| 2 | 34.99 ± 1.03 a | 11.03 ± 1.07 a | 5965.55 ± 54.23 a | |
| 4 | 31.53 ± 2.51 b | 9.55 ± 0.88 b | 5702.88 ± 112.76 b | |
| 6 | 26.87 ± 2.09 c | 7.76 ± 0.97 c | 4003.19 ± 108.45 c | |
| Determination in the β-C from β-C:β-CD complex | ||||
| MC | 0 | 45.22 ± 3.09 a | 57.87 ± 2.54 a | 25.32 ± 1.43 a |
| 2 | 40.15 ± 1.08 b | 53.65 ± 1.17 b | 23.21 ± 1.11 b | |
| 4 | 38.33 ± 1.01 c | 49.01 ± 2.22 c | 21.45 ± 2.02 c | |
| 6 | 36.98 ± 1.31 d | 45.87 ± 1.33 d | 19.97 ± 1.36 d | |
| MMAC | 0 | 45.22 ± 3.09 a | 57.87 ± 2.54 a | 25.32 ± 1.43 a |
| 2 | 44.76 ± 1.32 a | 57.44 ± 1.38 a | 25.89 ± 2.08 a | |
| 4 | 42.22 ± 2.04 b | 56.93 ± 1.04 a | 23.43 ± 1.22 a | |
| 6 | 41.77 ± 1.81 b | 53.75 ± 1.51 b | 21.09 ± 1.43 b | |
| Day | Mesophilic | Psychrophilic | Fungi/Yeasts | Coliforms | |
| M | 0 | <2.40 | <2.40 | <2.00 | <1.00 |
| 2 | 3.16 | <2.40 | <2.40 | <1.00 | |
| 4 | 5.60 | <2.40 | 4.69 | <1.00 | |
| 6 | 6.10 | <2.40 | 5.23 | <1.00 | |
| MMA | 0 | <2.40 | <2.40 | <100 | <1.00 |
| 2 | <2.40 | <2.40 | <100 | <1.00 | |
| 4 | 2.94 | <2.40 | <2.40 | <1.00 | |
| 6 | 3.08 | <2.40 | 3.15 | <1.00 | |
| MC | 0 | <2.40 | <2.40 | <100 | <1.00 |
| 2 | 3.16 | <2.40 | <2.40 | <1.00 | |
| 4 | 5.61 | <2.40 | 4.57 | <1.00 | |
| 6 | 6.06 | <2.40 | 5.20 | <1.00 | |
| MMAC | 0 | <2.40 | <2.40 | <2.00 | <1.00 |
| 2 | <2.40 | <2.40 | <2.00 | <1.00 | |
| 4 | 2.99 | <2.40 | <2.40 | <1.00 | |
| 6 | 3.15 | <2.40 | 3.10 | <1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
