Submitted:
07 February 2026
Posted:
10 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theory
2.1. Octonionic Representation of the Three-Body State
2.2. Equations of Motion
2.3. Reduction via Jacobi Coordinates and G₂ Invariants
2.4. Regularization via Informational Viscosity (VTT)
2.5. Numerical Implementation: G₂–Lie Variational Integrator
2.6. Physical Interpretation
| Concept | Classical | G₂–Octonionic Reinterpretation |
| Chaotic coupling | Unpredictable triple interaction | Torsion of the associator |
| Singularities | 1/r divergence | Smoothed by informational viscosity |
| Conserved quantities | Energy, angular momentum | |
| 2-body limit | Kepler problem | Quaternionic subalgebra (associator = 0) |
2.7. Mathematical Expansion
2.8. Formal Properties and Informational Regularization
3. Discussion
4. Results and Validation
4.1. Hypotheses
| ID | Hypothesis | Expected Observation |
| H₁ | The G₂–Lie integrator maintains total-energy drift < 10⁻⁷ over 10⁷ steps. | Long-term energy stability superior to symplectic Verlet. |
| H₂ | Informational viscosity suppresses blow-up near collisions. | Finite minimum distance rₘᵢₙ > 10⁻⁴ even in Burrau-type runs. |
| H₃ | Cayley-area invariant (𝓙 = φ(u, ẋ, v)) remains quasi-constant. | |
| H₄ | Associator torque localizes chaos. | Largest Lyapunov exponent ↓ by ≥ 15 %. |
4.2. Benchmark Scenarios
- Lagrange–Euler Triangle — symmetry and equilibrium preservation.
- Figure-Eight Choreography — bounded chaotic regime, long-term periodicity.
- Burrau (Pythagorean) — severe near-collision test.
- Sitnikov Variant — one-body chaos probe.
- Hierarchical Triple — long-term secular evolution.
4.3. Integration Schemes for Comparison
- G₂–Lie Variational + IRSVT Adaptive Feedback (this work)
- Symplectic Stoermer–Verlet
- Yoshida 4/6-order splitting
- KS regularization + RK4
- Adaptive RKF45
4.4. Metrics
- Energy drift = |E(t) − E(0)| / |E(0)|
- Angular-momentum drift = ‖L(t) − L(0)‖ / ‖L(0)‖
- Cayley invariant drift = |𝓙(t) − 𝓙(0)| / |𝓙(0)|
- Minimum pairwise distance rₘᵢₙ
- Largest Lyapunov Exponent (LLE)
- Phase-entropy and feedback maps
4.5. Experiment Matrix
| Case | Masses | α | ν | ΔC* | Duration (orb.) | Primary Metric |
| Lagrange Eq. | 1,1,1 | 0 – 1e-2 | 0 – 1e-3 | 0.25 | 100 | < 10⁻⁷ |
| Figure-Eight | 1,1,1 | 0 – 1e-2 | 0 – 1e-3 | 0.25 | 50 | < 10⁻⁶ |
| Burrau | 3,4,5 | 0 – 1e-2 | 1e-5 – 1e-3 | 0.25 | multi-coll. | rₘᵢₙ > 10⁻⁴ |
| Sitnikov | 1,1,1e-3 | 0 – 1e-2 | 0 – 1e-3 | 0.35 | 200 | LLE ↓ ≥ 15 % |
| Hierarchical | 1,1e-3,1e-6 | 0 – 1e-2 | 0 – 1e-3 | 0.25 | 10⁶ steps | < 10⁻⁷ |
4.6. Implementation Protocol
- Core code: Octonion, G2Project, Associator Torque, IRSVT adaptive feedback.
- Languages: MATLAB (primary); Python (JAX for auto-diff).
- Logging: JSON format; checkpoint every 10⁴ steps.
- Outputs: E(t), L(t), 𝓙(t), ΔC(t), Δt(t), rₘᵢₙ(t); plots and feedback maps.
4.8. Expected Outcomes
4.9. Risk Register & Mitigations
4.10. Figure set - G₂ Octonionic There – Body Model
5. Conclusions
- Analytical exploration of the associator potential landscape, including the stability boundaries of quaternionic submanifolds.
- Numerical simulations of three-body trajectories using MATLAB IRSVT-integrated viscosity models, validating the confinement of chaos and energy regularization.
- Comparative analysis with symplectic and geometric integrators, emphasizing the preservation of quasi-invariants and topological coherence.
- Extension to N-body configurations, testing whether higher-dimensional G₂ manifolds sustain coherent substructures beyond triadic coupling.
- Integration with VTT formalism, exploring the unification of gravitational dynamics and informational thermodynamics through coherent manifold flow.
Appendix A: Associator Derivation
Appendix B: Invariant Forms
Appendix C: Informational Viscosity Operator
References
- Newton, I. Philosophiæ Naturalis Principia Mathematica.; Royal Society: London, 1687. [Google Scholar]
- Euler, L. De Motu Corporum Coelestium. Novi Commentarii Academiae Scientiarum Petropolitanae 1764, 10, 207–242. [Google Scholar]
- Poincaré, H.; Gauthier-Villars. Les Méthodes Nouvelles de la Mécanique Céleste.; Paris, 1892. [Google Scholar]
- Marsden, J.E.; West, M. Discrete Mechanics and Variational Integrators. Acta Numerica 2001, 10, 357–514. [Google Scholar] [CrossRef]
- Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations., 2nd ed.; Springer: Berlin, 2006. [Google Scholar] [CrossRef]
- Sanz-Serna, J.M. Numerical Hamiltonian Problems.; Springer: Berlin, 1994; ISBN 978-3-540-56231-4. [Google Scholar]
- Naber, G.L. Topology, Geometry, and Gauge Fields II: Compact Manifolds and Complex Geometry.; Springer: New York, 2000; ISBN 978-1-4419-3169-0. [Google Scholar]
- Baez, J.C. The Octonions. Bulletin of the American Mathematical Society 2002, 39(2), 145–205. [Google Scholar] [CrossRef]
- Bryant, R.L. Metrics with Exceptional Holonomy. Annals of Mathematics 1987, 126(3), 525–576. [Google Scholar] [CrossRef]
- Bianchetti, R. Octonion Algebraic Interpretation of Informational Coherence in Spiral Collapse Dynamics.; Preprints.org., 2025; Volume 10. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
