Submitted:
06 February 2026
Posted:
09 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Preparation of the Fullerene C60 Films
2.2. Generation of Surface Patterns by Diamond-Pin Sliding
2.3. Plasma Treatment of Samples
2.4. Microscopic Characterization
2.5. Raman Spectroscopic Characterization
2.6. Cell Culture Experiments
2.6.1. Cytotoxicity Assessment
2.7. Microbiological Experiment
2.7.1. Test in Direct Contact with the Material
3. Results
3.1. Optical Microscopy
3.2. Raman Spectroscopy
3.3. Cytotoxicity Tests
3.4. Microbiological Test


4. Discussion

5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| C60 | Fullerene molecule with 60 carbon atoms |
| ZrO2 | Zirconia |
| TLA | Three letter acronym |
| LD | Linear dichroism |
References
- Sonowal, L.; Gautam, S.; Mambiri, L.T.; Depan, D. Advancements of bioceramics in biomedical applications. Next Materials 2025, 9, 101010. [Google Scholar] [CrossRef]
- Tabassum, N.; Kumar, D.; Verma, D.; Bohara, R.A.; Singh, M.P. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next generation of multifunctional nanoparticles. Materials today Communications 2021, 26, 102156. [Google Scholar] [CrossRef]
- Bahammam, H.A.; Bahammam, L.A.; Baghdadi, A.M.; Saddiq, A. Antimicrobial activity of Nanozirconium oxide. ACS OMEGA 2024, 9, 2945–2952. [Google Scholar] [CrossRef]
- Annu, A.; Sivasannkari, C.; Krupasankar, U. Synthesis and characterization of ZrO2 nanoparticles by leaf extract bioreduction process for its biological studies. Materials Today Proceedings 2020, 33, 5317–5323. [Google Scholar] [CrossRef]
- Figueireda-Pina, C.G.; Rodrigues, I.; Seueira, J.; Guedes, M.; Carneira, C. Does the presence of a S. Salivarius biofilm influence the tooth-zirconia pair triboactivity? An in-vitro study. Wear 2019, 430-431, 50–56. [Google Scholar] [CrossRef]
- Yumoto, H.; Hirota, K.; Hirao, K.; Ninomiya, M.; Murakami, K.; Fujii, H.; Miyake, Y. The pathogenic factors from oral streptococci for systemic diseases. International Journal of Molecular Sciences 2025. [Google Scholar] [CrossRef]
- Kreth, J.; Giacamen, R.A.; Raghavan, R.; Merritt, J. The road less travelled – defining molecular commensalism with Streptococcus sanguinis. Molecular oral microbiology 2017, 3(32), 181–196. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Chu, C.H.; Yu, O.Y.; He, J.; Li, M. Roles of streptococcus mutans in human health: beyond dental caries. Frontiers in Microbiology 2024, 15, 1503657. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, G.; Porporati, A.A. Raman spectroscopic analysis of phase-transformation and stress patterns in zirconia hip joints. Journal of Biomedical Optics 2004, 9/2, 372–384. [Google Scholar] [CrossRef]
- Müller Ramos, C.; Tabata, A.-S.; Cesar, P.F.; Rubo, J.H.; Silveira Fracisconi, P.A.; Sanches Borges, A. F. Applocation of mircor-Raman spectroscopy to the study of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) phase transformation. Applied Spectroscopy 2015, 69/7, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zhang, Y.; Xu, J.; Deng, D.; Mao, Z.; Meng, X.; Shi, X.; Zhao, B. Surface-enhanced Raman scattering activity of ZrO2 nanoparticles: Effect of tetragonal and monoclinic phases. Nanomaterials 2021, 11, 2162. [Google Scholar] [CrossRef] [PubMed]
- Dorner-Reisel, A.; Ritter, U.; Moje, J.; Freiberger, E.; Scharff, P. Effect of fullerene C60 thermal and tribomechanical loading on Raman signals. Diamond & Related Materials 2022, 126, 109036. [Google Scholar] [CrossRef]
- Chase, S.J.; Bacsa, W.S.; Mitch, M.G.; Pilione, L.J.; Lannin, J.S. Surface-enhanced Raman scattering and photoemission of C60 on noble-metal surfaces. Phys. Rev. B 1992, 46, 7873–7877. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, G.; Nagaraju, N.; Bhat, S.D. Functionalized fullerene embedded in Nafion matrix: A modified composite membrane electrolyte for direct methanol fuel cells. Chem. Eng. J. 2016, 306, 43–46. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Kuo, K.; Liu, B.; Shu, Y.; Zhang, Y.; Sun, L.; Gao, Y.; Ma, M.; Li, Z.; Li, B.; Ying, P.; Zhao, Z.; Hu, W.; Benavides, V.; Chernogorova, O.P.; Soldatov, A.V.; He, J.; Yu, D.; Xu, B.; Tian, Y. Narrow-gap, semiconducting, superhard amporphous carbon with high toughness, derived from C60 fullerene. Cell Reports Physical Science. [CrossRef]
- Zygouri, P.; Spyrou, K.; Mitsari, E.; Barria, M.; Macovez, R.; Patila, M.; Stamatis, H.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Sideratou, Z.; Gournis, D.; Rudolf, P. A facile approach to hydrophilic oxidized fullerenes and their derivatives as cytotoxic agents and supports for nanobiocatalytic systems. Nature Scientific Reports 2020, 10, 8244. [Google Scholar] [CrossRef]
- Staresinic, D.; Dominko, D.; Rakic, I.S.; Milat, O.; Ristric, D.; Ivanda, K.; Radic, T.M.; Clement, A.; Saint-Paul, M.; Kozlov, M.E.; Biljakovic, K. Fractal nature of hard carbon prepared from C60 fullerene. Carbon 2017, 124, 708–721. [Google Scholar] [CrossRef]
- Hellgren, N.; Johansson, M.P.; Broitman, E.; Hultman, L.; Sundgren, J.-E. Role of nitrogen in the foramtion of hard and elasstic CNx thin films by reactive magnetron sputtering. Phys. Rev. B 1999, 59, 5162. [Google Scholar] [CrossRef]
- Dorner-Reisel, A.; Kübler, L.; Irmer, G.; Reisel, G.; Schöps, S.; Klemm, V.; Müller, E. Characterisation of nitrogen modified diamond-like carbon films deposited by radio-frequency plasma enhanced chemical vapour deposition. Diamond & Related Materials 2005, 14, 1073–1077. [Google Scholar] [CrossRef]
- Doyle, T.E.; Dennison, J.R. Vibrational dynamics and structure of graphitic amorphous carbon modelled using an embedded-ring approach. Phys. Rev. B 1995, 51, 196. [Google Scholar] [CrossRef]
- Sharanraj, V.; Ramesha, C.M.; Naveen Kumar, M. Zirconia: As a biocompatible biomaterial used in dental implants. Advances in Applied Ceramics: Strucutral, Functional and Bioceramics. 2021, 120(2), 63–68. [Google Scholar] [CrossRef]
- Marsh, P.D.; Percival, R.S. The oral microflora. International Dental Journal 2006, 56, 233–239. [Google Scholar] [CrossRef]
- Zhai, S.; Tian, Y.; Shi, Y.; Kiu, Y.; You, J.; Yang, Z.; Wu, Y.; Chu, S. Overview of strategies to improve the antibacterial property of dental implants. Frontiers in Bioengineering and Biotechnology 2023. [Google Scholar] [CrossRef]
- Bolshakova, O.; Lebedev, V.; Mikhailova, E.; Zherebyateva, O.; Aznabaeva, L.; Burdakov, V.; Kuvelis, Y.; Yevlampieva, N.; Mirinov, A.; Miroshnichenko, I.; Sarantseva, S. Fullerenes on a nanodiamond platform demonstrate antibacterial activity with low cytotoxicity. Pharmaceutics 2023, 15(7), 1984. [Google Scholar] [CrossRef] [PubMed]
- Heredia, D.A.; Durantini, A.M.; Durantini, J.E.; Durantini, E.N. Fullerene C60 derivatives as antimicrobial photodynamic agents. Journal of photochemistry & photobiology, C: Photochemistry reviews 2022, 51, 100471. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Deng, J.; Ye, J.; Ai, F.; Ouyang, H. 3D printed zirconia ceramic hip joints with precise structure and broad-spectrum antibacterial properties. International journal of nanomedicine 2019, 14, 5977–5987. [Google Scholar] [CrossRef]
- Huang, H.L.; Chang, Y.-Y.; Chen, Y.-C.; Chen, M.Y.C. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium. Thin solid films 2013, 549, 108–116. [Google Scholar] [CrossRef]
- Necula, B.S.; van Leeuwen, J.P.T.M.; Fratila-Apachitei, L.E.; Zaat, S.A.J.; Apachitei, I.; Duszczyk, J. In vitro cytotoxixity evaluation of porous TiO2-Ag antibacterial coatings for human fetal osteablasts. Acto Biomater. 2012, 8(11), 4191–4197. [Google Scholar] [CrossRef] [PubMed]
- Eto, S.; Miyamoto, H.; Shobuike, T.; Noda, I.; Akiyama, T.; Tsukamoto, M.; Ueno, M.; Someya, S.; Kwano, S.; Sonohata, M.; Mawatari, M. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strenth in rat femur. Journal of orthopaedic research 2015, 22(9), 1391–1397. [Google Scholar] [CrossRef]
- Rezaei, N.; Taniyama, T.; Ogawa, T.; et al. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. International Journal Nanomedicine 2018, 13, 3381–3395. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.D.; Li, H.T.; Dai, X.; Sun, X.N.; Zhang, H.Y.; Zheng, Y.Z.; Tao, X.; Yang, L.H. Micron-scale ultrathin two-dimension zirconia nanosheets towards enhancing anticorrosion performance of epoxy coatings. Tungsten 2021, 3(4), 459–469. [Google Scholar] [CrossRef]
- Ganser, R.; Bongarz, S.; von Mach, A.; Antunes, L.A.; Kersch, A. Piezo- and pyroelectricity in zirconia with machine-learned force fields. Phys. Rev. Applied 2022, 18, 054066. [Google Scholar] [CrossRef]
- Silva, A.; Ganser, R.; Silver, J.P.B.; Kersch, A.; Lenzim, V.; Marques, L. Ab initio study of doping effects on the ferrelectric and piezoelectric propeteis of ZrO2. Acta Materilia 2025, 301, 121584. [Google Scholar] [CrossRef]
- Roy, D.; Panda, B.K.; Parashar, C.K.; Chakraborty, M. Comparative thickness dependent structural, dielectric and ferroelectric property study of PLD deposited ZrO2 thin films. Materials Science & Eng. B 2026, 325, 119143. [Google Scholar] [CrossRef]
- El Boutaybi, A.; Maroutian, T.; Largeau, N.; Findling, N.; Brusbach, J.; Cervasio, R.; Degezelle, A.; Matzen, S.; Vivien, P.; Roy, P.; Karamanis, P.; Rerat, M.; Lecaeur, P. Ferroelectricity in epitaxial tetragonal ZrO2 thin films. Adv. Electron. Mater. 2024, 10, 2300516. [Google Scholar] [CrossRef]
- Sant, L.J.; Stalin, K.; Dilbaghi, N.; Kumar, S.; Tawale, J.; Singh, S.P.; Pasricha, R. Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnology 2012, 12, 7105–7112. [Google Scholar]
- Chen, C.; Dorner-Reisel, A.; Wang, T.; Freiberger, E.; Schneider, D.; Ritter, U.; Moje, J. Tribomechanical promotion of photon emission on the fullerene C60 coated titanium surfaces. Diamond & Related Materials 2025, 154, 112227. [Google Scholar] [CrossRef]
- Balog, S.; de Almeida, M. S.; Taladriz-Blanco, P.; Rothen-Rutishauser, B.; Petri-Fink, A. Does the surface charge of the nanoparticles drive nanoparticle-cell membrane interactions? Current Opinion in Biotechnology 2024, 87, 103128. [Google Scholar] [CrossRef]
- Rodgiuez-Lejarraga, P.; Martin-Iglesias, S.; Moneo-Cocuera, A.; Colom, A.; Rendono-Morata, L.; Giannotti, M.I.; Petrenko, V.; Moleón-Guinot, I.; Mata, Manuel; Silvan, U.; Lanceros-Mendez, S. The surface charge of electrostatic materials governs cell behaviour through its effect on protein deposition. Acta Biomaterialia 2024, 184, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K. Electrostatic interaction chromatography, a method for assaying the relative surface charges of bacteria. FEMS Microbiology Letters 1980, 12, 365–367. [Google Scholar] [CrossRef]
- Wilhelm, M.J.; Sharifian Gh, M.; Wu, T.; Li, Y; Chang, C.-M.; Ma, J.; Dai, H.-L. Determination of bacterial surface charge density via saturation of adsorbed ions. Biophysical Journal 2020, 120, 2461–2470. [Google Scholar] [CrossRef]
- Partha, R.; Conyers, J.L. Biomedical application of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 2009, 4, 261–275. [Google Scholar] [CrossRef]
- Ratnikova, O.V.; Tarasova, E.V.; Melenevskaya, E.Y.; Zgonnik, V.N.; Baranovskaya, I.A.; Klenin, S.I. Behavior of poly-N-vinylpyrrolidone-fullere C60 composites in aqueous solutions. Polym. Sci. Ser. A 2004, 46, 752–756. [Google Scholar]
- Dorner-Reisel, A.; Wang, T.; Freiberger, E.; Ritter, U.; Moje, J.; Zhao, M.; Scharff, P. Fullerene C60 films on dental implants: Durability study after in vitro short-term exposure. Diamond & Related Materials 2023, 135, 109886. [Google Scholar] [CrossRef]
- Saraswati, T.E.; Setiawan, U.H.; Ihsan, M.R.; Isnaeni, I.; Herbani, Y. The study of the optical properties of C60 fullerene in different organic solvents. Open Chem. 2019, 17, 1198–1212. [Google Scholar] [CrossRef]
- FRanskevynch, D.; Palyvoda, K.; Petukhov, D.; Prylutska, S.; Grynyuk, I.; Schuetze, C.; Drobot, L.; Matyshevska, O.; Ritter, U. Fullerene C60 penetration into Leukemic cells and its photoinduced cytotoxic effects. Nanoscale research letters 2017, 12(40). [Google Scholar] [CrossRef]
- Markovic, Z.; Trajkovic, V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 2008, 29, 3561–3573. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, M.; Zhu, J.; Zhang, X. Multifunctional carbon-based nanomaterials: Application in biomolecular imaging and therapy. ACS Omega 2018, 3(8), 9126–9145. [Google Scholar] [CrossRef]










|
Crystalline structure of ZrO2 |
Reference peaks | Raman peak position | ||
|
[9,10,11] |
ZrO2 “as delivered” |
ZrO2 plasma |
ZrO2 Tribomecha-nical loaded |
|
| Tetragonal structure |
~142 cm-1 ~256 cm-1 ~320 cm-1 ~466 cm-1 ~637 cm-1 |
145 cm-1 259 cm-1 322 cm-1 462 cm-1 606 cm-1 641 cm-1 |
146 cm-1 259 cm-1 322 cm-1 463 cm-1 607 cm-1 641 cm-1 |
146 cm-1 259 cm-1 322 cm-1 463 cm-1 610 cm-1 641 cm-1 |
| Monoclinic structure |
~178 cm-1 ~190 cm-1 ~219 cm-1 ~303 cm-1 ~331 cm-1 ~345 cm-1 ~379 cm-1 ~474 cm-1 ~500 cm-1 ~534 cm-1 ~559 cm-1 ~615 cm-1 ~638 cm-1 |
- - - - - - - - - - - - - |
- - - - - - - - - - - - - |
- - - - - - - - - - - - - |
| Cubic structure ~628 cm-1 - - - | ||||
| Measurement position | Hg(7) | Ag(2) | Hg(8) | |
| Position (1) | 1,422.1 cm-1 | 1,461.0 cm-1 1,466.2 cm-1 1,479.6 cm-1 |
1,574.6 cm-1 | |
| Position (2) | 1,406.1 cm-1 | 1,464.7 cm-1 | 1,594.7 cm-1 | |
| Position (3) | 1,434.1 cm-1 | 1,462.8 cm-1 | 1,579 cm-1 | |
| Bacteria strain |
Mean of the number of viable bacteria (CFU/sample) |
Antibacterial activity | ||||
|
Control material t=0 |
Control material t=24h |
Designation of tested materials | Tested materials | % CFU reduction | Log CFU reduction | |
| S. aureus | 3.43·104 | 1.31·107 | ZrO2 | 1.15·107 | 12.21 | 0.06 |
| ZrO2 plasma |
1.72·107 | - | - | |||
| ZrO2+C60 | 1.86·106 | 85.80 | 0.85 | |||
| ZrO2+C60 plasma |
3.64·106 | 72.21 | 0.56 | |||
| ZrO2+C60 tribo |
2.3·106 | 82.44 | 0.76 | |||
| ZrO2+C60 tribo, plasma |
2.18·106 | 83.36 | 0.78 | |||
| ZrO2 tribo |
3.87·106 | 70.46 | 0.53 | |||
| ZrO2 tribo, plasma |
2.26·107 | - | - | |||
| E.coli | 1.63·105 | >1·108 (number of bacteria above detection) | ZrO2 | >1·108 | - | - |
| ZrO2 plasma |
>1·108 | - | - | |||
| ZrO2+C60 | >1·108 | - | - | |||
| ZrO2+C60 plasma | >1·108 | - | - | |||
| ZrO2+C60 tribo |
>1·108 | - | - | |||
| ZrO2+C60 tribo, plasma |
>1·108 | - | - | |||
| ZrO2 tribo |
>1·108 | - | - | |||
| ZrO2 plasma |
>1·108 | - | - | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
