Preprint
Article

This version is not peer-reviewed.

Rheological Behavior and Molecular Interactions in Concentrated Polycarbosilane Solutions in Linear and Cyclic Hydrocarbon Solvents

Submitted:

06 February 2026

Posted:

10 February 2026

You are already at the latest version

Abstract
Concentrated solutions of polycarbosilane (PCS) are critically important for the development of continuous SiC precursor fibers, where solvent–polymer interactions govern rheology, viscoelastic stability, and spinnability. In this work, PCS solutions in two nonpolar hydrocarbon solvents with different molecular architectures as linear n-heptadecane and bicyclic decalin were systematically investigated over a wide concentration range, with emphasis on the semi-dilute entangled and concentrated regimes relevant to solution-based fiber spinning. A combined experimental approach involving steady and oscillatory rheometry and Fourier-transform infrared (FTIR) spectroscopy was used to elucidate the influence of solvent structure on solvation, viscoelastic response, microstructural organization, and local intermolecular interactions. Despite similar dilute-solution interaction parameters, the concentrated regimes exhibit pronounced solvent-dependent differences in elasticity, flow behavior. For the first time, linear heptadecane is identified as a viable and technologically promising solvent for PCS, enabling the formation of termostability homogeneous concentrated solutions with enhanced deformability. This behavior opens a realistic pathway toward a new solution-based fiber-spinning route based on elasticity-controlled processing. The results demonstrate that solvent molecular geometry governs the structure–rheology–processability relationship of concentrated PCS systems rather than solubility parameters alone, providing a new framework for solvent selection in SiC precursor fiber technologies.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated