Preprint
Article

This version is not peer-reviewed.

Dataset for a Monte Carlo Based Techno-Economic Assessment of the Synthetic Methanol-to-Jet Fuel Production Pathway

  † These authors contributed equally to this work.

Submitted:

06 February 2026

Posted:

09 February 2026

You are already at the latest version

Abstract
This article presents a dataset generated for a techno-economic assessment (TEA) of the methanol-to-jet (MtJ) fuel production pathway. The dataset was produced using a large-scale Monte Carlo (MC) sampling approach applied to a steady-state process model implemented in Aspen Plus V14. The techno-economic evaluation was conducted using an external cost model, with subsequent data processing performed in Python. In total, three million individual data points were generated by varying key technical and economic input parameters within predefined ranges and are under public access. For each MC sample, the net production cost on a mass basis (NPCm, EUR kgjet-fuel-1) of synthetic jet fuel was calculated as the primary economic performance indicator. The dataset comprises both the sampled input parameters and the corresponding techno-economic output variables and is intended to support transparency, reproducibility, and further uncertainty analysis of MtJ fuel production pathways.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated