Submitted:
04 February 2026
Posted:
05 February 2026
You are already at the latest version
Abstract
Keywords:
Introduction

Antimicrobial Resistance (AMR) of Bacteria Contaminating Poultry Meat
Salmonella Resistance to Antibiotics
Antibiotic Resistance of Escherichia coli
Antibiotic Resistance of Staphylococcus aureus
Listeria monocytogene Resistance to Antibiotics
Practices Promoting the Emergence of AMR in Poultry Farming
Transmission to Humans via Poultry Consumption

Action Plan to Combat AMR
- -
- raising awareness among healthcare workers and the public
- -
- strengthening surveillance and research
- -
- implementing sanitation, hygiene, and infection prevention measures
- -
- optimizing the use of antimicrobials in human and animal health
- -
- supporting sustainable investments in the development of new treatments, diagnostics, and vaccines
Conclusion
Ethical considerations
Conflict of interest
References
- Abba, H. S. Prévalence et susceptibilité aux antibiotiques des souches de Salmonella spp. non typhiques isolées de la viande de poulets au Tchad. Int. J. Biol.Chem.Sci. 2017, 11(1), 107–117. [Google Scholar] [CrossRef]
- Abdelli, M.K.; Ain Baziz, H. Recherche de Salmonella et d’Escherichia coli dans les carcasses de poulet et évaluation de l’antibiorésistance; Magister en Sciences Vétérinaires. ENSV. Alger, 2011. Available online: http://depot.ensv.dz:8080/jspui/handle/123456789/349 (accessed on 22 April 2024).
- Samad, Abdul. Antibiotics resistance in poultry and its solution. Devotion J. Res. Community Serv. 2022, 3(10), 999–1020. [Google Scholar] [CrossRef]
- Acar, J.F.; Moulin, G. Antimicrobial resistance: a complex issue. Rev. sci. tech. Off. int. Epiz 2012, 31(1), 23–31. [Google Scholar] [CrossRef] [PubMed]
- AFSSA. Rapport de la Commission d’étude des risques liés à Listeria monocytogenes. 2000. Available online: https://www.anses.fr/fr/system/files/MIC-Ra-Listeria2000.pdf (accessed on 22 April 2024).
- AFSSA. Usages vétérinaires des antibiotiques, résistance bactérienne et conséquences pour la santé humaine. 2006. Available online: https://www.anses.fr/system/files/SANT-Ra-ABR.pdf (accessed on 22 April 2024).
- Aidara-Kane, A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev. sci. tech. Off. int. Epiz 2012, 31(1), 277–287. Available online: https://scispace.com/pdf/containment-of-antimicrobial-resistance-due-to-use-of-45bj0c98ui.pdf (accessed on 22 April 2024). [CrossRef]
- Ajibola, A.T.; de Lagarde, M.; Ojo, O.E.; Balogun, S.A; Vanier, G.; Fairbrother, J.M.; Shittu, O.B. Antimicrobial resistance and virulence gene profiles of Escherichia coli isolated from poultry farms using One Health perspective in Abeokuta, Nigeria. BMC Microbiol. 2025, 25, 440. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, R. M.; Solberg, O.D; Lee, B.L; Raphael, E.; Debroy, C.; Riley, L.W. Global spread of mobile antimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonella strains causing community-acquired infections. Clin. Infect. Dis. 2009, 49(3), 365–71. [Google Scholar] [CrossRef]
- Akbar, A.; Anal, A.K. Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat. Asian Pac. J. Trop. Biomed. 2013, 3(2), 163–168. [Google Scholar] [CrossRef]
- Allerberger, F. Corrigendum to ‘Poultry and humain infections ‘. Clin.Microbiol.Infect 2016, 22(2), 101–102. [Google Scholar] [CrossRef]
- Alloui, N.; Ayachi, A.; Krim, A.; Nouicer, F. Comparaison of tow initial method of desinfection in a poutry slaughterhouse. XII International Congress ISAAH, Warsaw. Poland; 2005; pp. 56–59. Available online: https://www.researchgate.net/publication/242240961 (accessed on 22 April 2024).
- Alvarez-Astorga, M.; Capita, R.; Alonso-Calleja, C.; Moreno, B.; Del, M.; García-Fernández, C. Microbiological quality of retail chicken by-products in Spain. Meat Sci. 2002, 62(1), 45–50. [Google Scholar] [CrossRef]
- ANR. La resistance aux antibiotiques. Les cahiers de l’agence nationale de la recherche, 14, pp108. 2022, 14, p. pp108. Available online: https://anr.fr/fileadmin/documents/2022/ANR_cahier_14_antibioresistance.pdf (accessed on 22 April 2024).
- ANSES. Évaluation des risques d’émergence d’antibiorésistances liées aux modes d’utilisation des antibiotiques dans le domaine de la santé animale. 2014. Available online: https://www.anses.fr/system/files/SANT2011sa0071Ra.pdf (accessed on 22 April 2024).
- Awad, A; Gwida, M; Khalifa, E; Sadat, A. Phenotypes, antibacterial-resistant profile, and virulence-associated genes of Salmonella serovars isolated from retail chicken meat in Egypt. Vet. World 2020, 13(3), 440–445. [Google Scholar] [CrossRef]
- Bantawa, K.; Rai, K.; Subba Limbu, D.; Khanal, H. Food-borne bacterial pathogens in marketed raw meat of Dharan, eastern Nepal. BMC Research Notes 2018, 11(1), 618. [Google Scholar] [CrossRef]
- Barthe, C.; Cardina, P.D. Lignes directrices pour l'interprétation des résultats analytiques en microbiologie alimentaire; Ste-Foy, Québec, 2003. Available online: http://www.mapaq.gouv.qc.ca/fr/Publications/recueil.pdf (accessed on 22 April 2024).
- Benrabia, I.; Oumouna, M. Dépistage de Staphylococcus aureus résistant à la méticilline (mRSA) chez la dinde et le poulet de chair: dépistage et risque zoonotique. Magister en Sciences Vétérinaires. ENSV. 2011. Available online: http://depot.ensv.dz:8080/jspui/handle/123456789/257 (accessed on 22 April 2024).
- Bornert, G. Importance des bactéries psychrotrophes en hygiène des denrées alimentaires. Revue Médicine. Vétérinaire 2000a, 151(11), 1003–1010. Available online: https://www.academia.edu/108077987/ (accessed on 22 April 2024).
- Bornert, G. Le poulet sans salmonelles: mythe ou réalité ? Rev. Méd. Vét 2000b, 15(12), 1083–1094. Available online: https://fr.scribd.com/document/489535670/ (accessed on 22 April 2024).
- Bouayad, L. H. T. Étude de la prévalence, de la sensibilité aux antibiotiques et caractérisation moléculaire des souches de Listeria isolées dans les viandes de volailles dans la région d'Alger; These Doctorat. ENSV. Alger, 2012. Available online: https://theses-algerie.com/1460547483569785/ (accessed on 12 September 2024).
- Bouhamed, R.H. Contribution à l'étude de la prévalence de Campylobacter spp. avec antibiogramme chez la dinde dans la région d'Alger et ses environs.1er Symposium des Sciences avicoles. Batna. Université El Hadj Lakhder Batna. 2010. Available online: https://www.researchgate.net/publication/285600055 (accessed on 12 September 2024).
- Cadirci, O.; Gucukoglu, A.; Gulel, G.; Uyanik, T.; Girgin, K. Genotyping and serotyping of Listeria monocytogene isolated from poultry meat. Fresenius Environ. Bull. 2020, 29(7), 5399–5407. Available online: https://aperta.ulakbim.gov.tr/records/4651 (accessed on 12 September 2024).
- Cardinale, E.; Perrier, J.D.; Aidara, A.; Tall, F.; Coudert, C.; Gueye, I.L.; Konte, M. Identification d'une nouvelle salmonelle multirésistante dans une viande de poulet de chair au Sénegal. Rev. Elev. Méd. Vet. Pays Trop. 2000a, 53(1), 5–8. [Google Scholar] [CrossRef]
- Cardinale, E.; Tall, F.; Kané, P.; Konté, M. Consommation de poulets de chair au Sénégal et risque pour la santé publique. International Workshop on Food Safety Management in Developing Countries; CIRAD. Montpellier. France, 2000b. Available online: https://agritrop.cirad.fr/509480 (accessed on 12 September 2024).
- Carle, S. La résistance aux antibiotiques: un enjeu de santé publique important ! Pharmactuel, 2009; Vol. 42, Supplément 2, pp. 6–21. Available online: https://pharmactuel.com/index.php/pharmactuel/article/view/977 (accessed on 12 September 2024).
- Castanon, J.I.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007, 86(11), 2466–2471. [Google Scholar] [CrossRef]
- CDC. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention. 2013. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 25 November 2024).
- Chanteau, S. Rapport d’activite de l’Institut Pasteur de Nouvelle Caledonie. 2008. Available online: https://www.institutpasteur.nc/wp-content/uploads/2012/08/Rapport_final_2008.pdf (accessed on 25 November 2024).
- Chen, P.; Cheng, F.; Huang, Q.; Dong, Y.; Sun, P.; Peng, Q. Distribution and antimicrobial resistance characterization of Listeria monocytogenes in poultry meat in Jiading District, Shanghai. J. Food Prot. 2024, 87(3), 100234. [Google Scholar] [CrossRef]
- Codex alimentarius. Projet de Code d’usages en matière d‘hygiène pour la viande. FAO. Rome. 2008. Available online: https://www.fao.org/4/y5454f/y5454f14.pdf (accessed on 25 November 2024).
- Cohen, N.; Ennaji, H.; Bouchrif, B.; Hassar, M.; Karib, H. Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco). J. Appl. Poultry Res 2007, 16(4), 502–508. [Google Scholar] [CrossRef]
- Colin, P. Salmonella et qualité des produits avicoles. Manuel de pathologie aviaire de Brugère-Picoux.J. ENV.d'Alfort. 1992. Available online: https://enva.hal.science/hal-04053725/ (accessed on 25 November 2024).
- Courvalin, P. La résistance des bactéries aux antibiotiques: combinaisons de mécanismes biochimiques et génétiques. Bull. Acad. Vét. France 2008, 161((1)), 7–12. [Google Scholar] [CrossRef]
- Dan, S.D; Tabaran, A; Mihaiu, L; Mihaiu, M. Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. J. Infect. Dev. Ctries 2015, 9, 035–041. [Google Scholar] [CrossRef]
- das Mercês Santos, A.F.; Vieira Amparo, L.F.; Machado, S.C.A.; Salles Dias, T.; Lucia Berto, L.H.; da Costa Abreu, D.L.; Cosendey de Aquino, M.H.; dos Prazeres Rodrigues, D.; de Almeida Pereira, V.L. Salmonella serovars associated with human salmonellosis in Brazil (2011-2020). Res. Soc. Dev. 2022, v11(n. 8), e28011830533. [Google Scholar] [CrossRef]
- Daube, G. Micro-organismes pathogènes et viande - la traçabilité alliée de la sécurité. Bull. Soc. R.Sci. Liège 2002, 71(1), 11–30. Available online: https://popups.uliege.be/0037-9565/index.php?id=1022 (accessed on 25 November 2024).
- Daube, G. Qualité sanitaire des produits de porcs et de volailles: importance des agents zoonotiques. Cinquième journée des productions porcines et avicoles.Liège. 2005. Available online: https://orbi.uliege.be/bitstream/2268/203779/1/Expos%c3%a9_GD.pdf (accessed on 25 November 2024).
- Delhalle, L.; Saegerman, C.; Farnir, F.; Korsak, N.; Daube, G. L’évaluation quantitative du risque microbiologique: revue de trois modèles liées à Salmonella dans les aliments. Ann. Méd. Vét 2008, (152), 116–129. Available online: https://www.researchgate.net/publication/286774165 (accessed on 25 November 2024).
- Djeffal, S.; A., L. Appreciation de la qualité bactériologique des carcasses de poulets de chair frais destinées à la consommation humaine. 1er Symposium National des Sciences Avicoles. Université de Hadj-Lakhdar – Batna. 2010. Available online: https://vrlex-ar.univ-batna.dz/images/proceeding/sciences_avicole/sciences_avicoles1.pdf (accessed on 25 November 2024).
- Dromigny, E. Les critères microbiologiques des denrées alimentaires: Réglementation- Agent microbien- Autocontrole. 2 eme Edition. TEC & DOC. 2011. Available online: https://bibliotheque.ensv.dz/index.php?lvl=notice_display&id=19026 (accessed on 25 November 2024).
- Dumitrescu, O.; Dauwalder, O.; Boisset, S.; Reverdy, M.É.; Tristan, A.; Vandenesch, F. Résistance aux antibiotiques chez Staphylococcus aureus: les points-clés en 2010 [Staphylococcus aureus resistance to antibiotics: key points in 2010]. Med./Sci. 2010, (11), 943–9. [Google Scholar] [CrossRef]
- Duval, M.; Cossart, P. Un nouveau mécanisme de résistance aux antibiotiques: Le recyclage des ribosomes. Méd./Sci 2019, 35(8-9), 611–613. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Rapport de synthèse communautaire sur les foyers de toxi-infection alimentaire au sein de l'Union européenne en 2007. 2009. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/ar07fr.pdf (accessed on 25 November 2024).
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015, 13(1), 3991. [Google Scholar] [CrossRef]
- FAO. Taking a multisectoral, one health approach: A tripartite guide to addressing zoonotic diseases in countries. 2019. Available online: https://openknowledge.fao.org/items/870b5a92-2fc4-430e-87a9-f8086335acc6 (accessed on 25 November 2024).
- Faraj, R.; Ramadan, H.; Bentum, K.E.; Alkaraghulli, B.; Woube, Y.; Hassan, Z.; Samuel, T.; Adesiyun, A.; Jackson, C.R.; Abebe, W. Antimicrobial Resistance, Virulence Gene Profiling, and Spa Typing of Staphylococcus aureus Isolated from Retail Chicken Meat in Alabama, USA. Pathogens 2025, 14, 107. [Google Scholar] [CrossRef]
- Faye, K. Le point sur l’usage vétérinaire des antibiotiques: impact sur l’antibiorésistance des bactéries en santé animale et humaine. Antibiotiques 2005, 7(1), 45–52. [Google Scholar] [CrossRef]
- Gad, F.; Eliora, Z.R. Escherichia coli, a Versatile Pathogen. In Current tropic in microbiology and immunology; Springer book, 2018. [Google Scholar] [CrossRef]
- Genigeorgis, C.A.; Oanca, P.; Dutulescu, D. Prevalence of Listeria spp. in turkey meat at the supermarket and slaughterhouse level. J Food Prot. 1990, 53(4), 282–288. [Google Scholar] [CrossRef]
- Gohil, V.S.; Ahmed, M.A.; Davies, R.; Robinson, R.K. Incidence of Listeria spp. in retail foods in the United Arab Emirates. J Food Prot. 1995, 58(1), 102–104. [Google Scholar] [CrossRef]
- Gücükoğlu, A.; Çadirci, O.; Terzi Gülel, G.; Uyanik, T.; Kanat, S. Serotyping and antibiotic resistance profile of Listeria monocytogenes isolated from organic chicken meat. Kafkas Univ Vet Fak Derg 2020, 26(4), 499–505. [Google Scholar] [CrossRef]
- Guergueb, N.; Alloui, N.; Ayachi, A.; Bennoune, O. Effect of slaughterhouse hygienic practices on the bacterial contamination of chicken meat. Sci. J. Vet. Adv. 2014, 3(5), 71–76. [Google Scholar] [CrossRef]
- Gundogan, N.; Citak, S.; Yucel, N.; Devren, A. A note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. Meat Sci. 2005, 69(4), 807–810. [Google Scholar] [CrossRef]
- Ahmed, Heba A.; Gharieb, Rasha M.; Mohamed, Mohamed E.M.; Amin, Magda A.; Mohamed, Rehab E. Bacteriological and molecular characterization of Salmonella species isolated from humans and chickens in Sharkia Governorate, Egypt. Zagazig Vet. J. 2017, 45(S1), 48–61. [Google Scholar] [CrossRef]
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A Review of antimicrobial resistance in poultry farming within low-resource settings. animals (Basel) 2020, 10(8), 1264. [Google Scholar] [CrossRef]
- Heetun, I.; Goburdhun, D.; Neetoo, H. Comparative microbiological evaluation of raw chicken from markets and chilled outlets of Mauritius. J. World's Poult. 2015, 5(1), 10–18. Available online: https://jwpr.science-line.com (accessed on 25 November 2024).
- Huart, A. Technologie post recolte. Centre Agronomique et Vétérinaire Tropical de Kinshasa (CAVTIK). 2003. Available online: https://buv.isfad-gn.org/daoa.html (accessed on 12 September 2024).
- Hue, O.; Le Bouquin, S.; Laisney, M.J.; Allain, V.; Lalande, F.; Petetin, I.; Rouxel, S.; Quesne, S.; Gloaguen, P.Y.; Picherot, M.; Santolini, J.; Salvat, G.; Bougeard, S.; Chemaly, M. Enquête sur la contamination de Campylobacter spp. des carcasses de poulets de chair en France en 2008 et les facteurs associés. Bull. Epedemio. Santé Anim. Alim 2010, 41, 9–11. Available online: https://be.anses.fr/sites/default/files/BEP-mg-BE41-art3.pdf (accessed on 25 November 2024).
- Hussain, A.; Shaik, S.; Ranjan, A.; Nandanwar, N.; Tiwari, S.K.; Majid, M.; Baddam, R.; Qureshi, I.A.; Semmler, T.; Wieler, L.H.; Islam, M.A.; Chakravortty, D.; Ahmed, N. Risk of transmission of antimicrobial resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Front. Microbiol. 2017, 8, 2120. [Google Scholar] [CrossRef] [PubMed]
- Institut-Pasteur. Résistance aux antibiotiques. 2017. Available online: https://www.pasteur.fr/fr/centre-medical/fiches-maladies/resistance-aux-antibiotiques (accessed on 25 November 2024).
- Khallaf, M.; Benbakhta, B.; Nasri, I.; Sarhane, B.; Senouci, S.; Ennaji, M.M. Prévalence du Staphylococcus aureus isolé à partir de la viande de poulet commercialisée au niveau de Rabat, Maroc. Int. J. Innov.Appl. Stud. 2014, 7(4), 1665–1670. Available online: https://ijias.issr-journals.org/abstract.php?article=IJIAS-14-181-01 (accessed on 25 November 2024).
- Kim, S.; Kim, H.; Kim, Y.; Kim, M.; Kwak, H; Ryu, S. Antimicrobial resistance of Escherichia coli from retail poultry meats in Korea. J.Food Prot 2020, 83(10), 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Korsak, N.; Clinquar, T. A.; Daube, G. Salmonella spp. dans les denrées alimentaires d’origine animale un réel problème de santé publique ? Ann. Méd. Vét 2014, (148), 174–193. Available online: http://www.facmv.ulg.ac.be/amv/articles/2004_148_4_03.pdf (accessed on 25 November 2024).
- Kozačinski, L.; Hadžiosmanović, M.; Zdolec, N. Microbiological quality of poultry meat on the Croatian market. Veterinarski Arhiv 2006, 76(4), 305–313. Available online: https://wwwi.vef.hr/vetarhiv/papers/2006-76-4-4.pdf (accessed on 25 November 2024).
- Lailler, R.; Moury, F.; Leclerc, V.; Bohnert, M.; Cadel-Six, S.; Brisabois, A. Surveillance de Salmonella dans la chaîne alimentaire pour la détection d’émergences en France. Bull. Epidemiol., Santé Anim. Alim 2015, 68, 11–16. Available online: https://be.anses.fr/sites/default/files/BEP-mg-BE68-art6.pdf (accessed on 25 November 2024).
- Liu, X.; Li, X.; Liu, J.; Chen, R.; Liu, R.; Zhao, R.; Zhao, J.; Hao, J.; Yang, S.; Luo, A.; Chen, A. Antimicrobial resistance of Escherichia coli from broilers in large-scale poultry farms in Shandong Province. Front. Microbiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Astorga, M.; Capita, R.; Alonso-Calleja, C.; Moreno, B.; Del, M.; García-Fernández, C. Microbiological quality of retail chicken by-products in Spain. Meat Sci. 2002, 62(1), 45–50. [Google Scholar] [CrossRef] [PubMed]
- Mahato, S. Relationship of sanitation parameters with microbial diversity and load in raw meat from the outlets of the Metropolitan City Biratnagar. Nepal Int. J. Microbio. 2019, (8), 1–17. [Google Scholar] [CrossRef] [PubMed]
- Alam, Mahbub U; Rahman, Mahbubur; -Al-Masud, Abdullah; Aminul Islam, Mohammad; Asaduzzaman, Muhammad; Sarker, Supta; Rousham, Emily; Unicomb, Leanne. Human exposure to antimicrobial resistance from poultry production: Assessing hygiene and waste-disposal practices in Bangladesh. Intern. J. of Hygiene and Environ. Health 2019, 222(8), 1068–1076. [Google Scholar] [CrossRef]
- Malcolm Reid, W.; Pesti Gene, M.; Hargis, B.; Moore, R.; Vohra, P.; Dean, W. F.; Hammarlund, M.A. L’élevage de volailles saines. Ed. Christian Veterinary Mission. 2001. Available online: https://share.google/k0ZvgUjIKIW9elxSn (accessed on 6 November 2023).
- Marault, M.; Itié-Hafez, S.; Morel, V.; Berta-Vanrullen, I.; Granier, S.; Born., C.; Danan, C. Surveillance programmée de la contamination par Salmonella spp. des viandes fraîches de volaille au stade de l’abattoir et de la résistance aux antibiotiques des souches isolées en 2014. Bull. Epidemiol., Santé Anim. Alim 2016, 77, 70–74. Available online: https://www.researchgate.net/publication/313920096 (accessed on 6 November 2023).
- Maung, A.T.; Mohammadi, T.N.; Nakashima, S.; Liu, P.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Antimicrobial resistance profiles of Listeria monocytogene isolated from chicken meat in Fukuoka, Japan. Int. J Food Microbiol. 2019, 304, 49–57. [Google Scholar] [CrossRef]
- Megraud, F.; Denis, J.B.; Ermel, G.; Federighi, M.; Gallay, A.; Kempf, I.; Leclercq, A.; Weber, P. Appréciation des risques alimentaires liés aux campylobacters, Application au couple poulet / Campylobacter jejuni. 2004. Available online: https://www.vie-publique.fr/rapport/26521-appreciation-des-risques-alimentaires-lies-aux-campylobacters-applicat (accessed on 6 November 2023).
- Messad, S. Campylobacter thermotolérants dans les élevages et abattoirs de poulet de chair: caractérisation phénotypique et antibiorésistance des souches isolées. Thèse de Doctorat.ENSV; Alger, 2016. Available online: https://depot.ensv.dz:8443/jspui/handle/123456789/55?locale=fr (accessed on 12 September 2024).
- Michel-Briand, Y. Aspects de la résistance bactérienne aux antibiotiques. Ed. L'Harmattan.France. 2012. Available online: https://api.pageplace.de/preview/DT0400.9782296508897_A24228559/preview-9782296508897_A24228559.pdf (accessed on 6 November 2023).
- Miranda, J.M.; Vázquez, B.I.; Fente, C.A.; Calo-Mata, P.; Cepeda, A.; Franco, C.M. Comparison of antimicrobial resistance in Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes strains isolated from organic and conventional poultry meat. J Food Prot. 2008, 71(12), 2537–42. [Google Scholar] [CrossRef]
- Moawad, AA; Hotzel, H; Awad, O; Tomaso, H; Neubauer, H; Hafez, HM; El-Adawy, H. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers; Gut Pathog, 2017. [Google Scholar] [CrossRef]
- Molbak., K. Spread of resistant bacteria and resistance genes from animals to humans–the public health consequences. J. Vet. Med., Series B 2004, 51(8-9), 364–369. [Google Scholar] [CrossRef]
- Muylaert, A.; Mainil, J.G. Résistances bactériennes aux antibiotiques: les mécanismes et leur contagiosité. Ann. Méd. Vét 2012, 156, 109–123. Available online: http://www.facmv.ulg.ac.be/amv/articles/2012_156_2_04.pdf (accessed on 6 November 2023).
- OIE. Normes, lignes directrices et résolution de l’OIE sur l’antibiorésistance et l’utilisation des agents antimicrobiens. 2020a. Available online: https://www.woah.org/fileadmin/Home/fr/Media_Center/docs/pdf/Portal%20AMR/FR-book-AMR.pdf (accessed on 6 November 2023).
- OIE. Risques liés à l’usage des antimicrobiens chez l’animal au niveau mondial. 2020b. Available online: https://www.woah.org/app/uploads/2015/02/d13696.pdf (accessed on 6 November 2023).
- OIE. second OIE annual report on the use of antimicrobial agents. 2017. Available online: https://www.woah.org/app/uploads/2023/05/a-seventh-annual-report-amu-final.pdf (accessed on 7 November 2025).
- FAO; OMS. Garantir la sécurité sanitaire et la qualité des aliments. 2003. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/873070db-010e-4e5c-9524-d8fcfff49486/content (accessed on 7 November 2025).
- WHO. Antimicrobial resistance: global report on surveillance. 2014. Available online: https://www.who.int/publications/i/item/9789241564748 (accessed on 7 November 2025).
- OMS. Résistance aux antibiotiques. 2020. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 7 November 2025).
- Pesavento, G.; Ducci, B.; Comodo, N.; Lo Nostro, A. Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: A research for methicillin resistant Staphylococcus aureus (MRSA). Food Control 2007, 18(3), 196–200. [Google Scholar] [CrossRef]
- Rahman, M. A.; Rahman, A. K. M. A.; Islam, M. A.; Alam, M. M. Detection of multi–drug resistant Salmonella from milk and meat in bangladesh. Bangl.J.Vet.Med 2018, 16(1), 115–120. [Google Scholar] [CrossRef]
- Rau, R.B; Ribeiro, A.R; dos Santos, A.; Barth, A.L. Antimicrobial resistance of Salmonella from poultry meat in Brazil: results of a nationwide survey. Epidemiol. Infect. 2021, 149(e228), 1–8. [Google Scholar] [CrossRef]
- Ribet, D.; Cossart, P. Listeria en lutte avec SUMO. Med /Sci 2010, 26, 545–547. [Google Scholar] [CrossRef]
- Sanders, P. Résistance aux antibiotiques chez les bactéries d’origine animale. Méd./Sci 2010, 26(11), 930–935. Available online: https://www.medecinesciences.org/fr/articles/medsci/pdf/2010/10/medsci20102611p930.pdf (accessed on 7 November 2025). [CrossRef]
- Sanders, P.; Granier, S.A; Gonnet, A.B.; Santolini, J. Les Plans de Surveillance de l’antibiorésistance en santé animale: le contexte européen et les évolutions récentes. Bull. Epidémiol 2012, 53, 25–29. Available online: https://anses.hal.science/hal-00751503v1 (accessed on 7 November 2025).
- Sharafat, S.; Kalhoro, D.H.; Kalhoro, M.S.; Abro, S.H.; Mangi, M.H.; Laghari, A.A; Nizamani, A.R.; Soomro, A.A.; Wagan, R.; Kaka, A.; Channo, A.; Kolachi, H.A; Panhwar, M.I.; Mehkar, H. Prevalence and antimicrobial resistance of Staphylococcus aureus, Salmonella and Escherichia coli Isolated from poultry meat in Tandojam, Hyderabad, Pakistan. Pak. J. Zool. 2025, 57(2), 501–507. [Google Scholar] [CrossRef]
- Souza, A.I.S.; Saraiva, M.M.S.; Casas, M.R.T.; Oliveira, G.M; Cardozo, M.V; Benevides, V.P.; Barbosa, F.O. Freitas; Neto, O.C.; Almeida, A.M.; Berchieri Junior, A. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15(3), e0230676. [Google Scholar] [CrossRef] [PubMed]
- Ta, Y.T.; Nguyen, T.T.; To, P.B.; Pham da, X.; Le, H.T.; Thi, G.N.; Alali, W.Q.; Walls, I.; Doyle, M.P. Quantification, serovars, and antibiotic resistance of Salmonella isolated from retail raw chicken meat in Vietnam. J. Food Prot. 2014, 77(1), 57–66. [Google Scholar] [CrossRef]
- Thapa., S.P.; Srestha, S.; Anal, A.K. Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control 2019, 108(4), 106809. [Google Scholar] [CrossRef]
- Tilahun, H.E.; Efa, D.A. Antimicrobial resistance profiling of Salmonella and Escherichia coli isolates from conventional poultry farms in Hossana Town, Central Ethiopia. BMC Vet Res 2025. [Google Scholar] [CrossRef] [PubMed]
- Titouche, Y.; Hakem, A.; Salmi, D.; Yabrir, B.; Chergui, A.; Meheut, T.; Vingadassalon, N.; Chenouf, N.; Chenouf, A.; Hennekinne, J.; Houali, K.; Auvray, F. Le portage de staphylocoque aureus constitue-t-il une menace pour la securite des aliments en filiere avicole ? VI eme Symposium de la Recherche en Sciences Avicoles. Constantine. Researchgate.net/publication/317021724. (accessed 7 November 2025).
- Van Immerseel, F.; De Buck, J.; Boyen, F.; Pasmans, F.; Bertrand, S.; Collard, J.M.; Saegerman, C.; Hooyberghs, J.; Haesebrouck, F.; Ducatelle, R. Salmonella dans la viande de volaille et dans les oeufs: un danger pour le consommateur qui demande la mise en place d’un programme de lutte efficace. Ann. Méd. Vét. 2005, pp. 34–48 (149. Available online: http://www.facmv.ulg.ac.be/amv/articles/2005_149_1_04.pdf (accessed on 7 November 2025).
- Venkitanarayanan, K.; Thakur, S.; Ricke, S.C. Food safety in poultry meat production; Springer International Publishing, 2019; p. 301. [Google Scholar] [CrossRef]
- Van Vuuren, M. Résistance aux antibiotiques, notamment en aviculture. 14 eme conférence regionale de l'OIE pour l’Afrique sur l'antibiorésistance. Arusha. Tanzania 2001, 15, 151–157. Available online: https://rr-africa.woah.org/app/uploads/2020/01/14conf_arusha2001rapfin.pdf (accessed on 7 November 2025).
- Weiss, K. La résistance bactérienne: la nouvelle guerre froide. Le Médecin du Québec 2002, 37((3)), 1–8. Available online: https://epe.bac-lac.gc.ca (accessed on 7 November 2025). accessed.
- Wooldridge, M. Evidence for the circulation of antimicrobial-resistant strains and genes in nature and especially between humans and animals. Rev Sci Tech 2012, 31(1), 231–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, J.; Zhang, Y.; Liu, S.; Chen, L.; Xiao, C.; Zeng, H.; Wei, X.; Gu, Q.; Li, Y.; Wang, J.; Ding, Y.; Zhang, J.; Wu, Q. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. Sci Total Environ. 2020, 713, 136385. (accessed on 7 November 2025). accessed. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, X.; Aspridou, Z.; Misiou, O.; Dong, P.; Zhang, Y. The prevalence and antibiotic-resistant of Listeria monocytogenes in livestock and poultry meat in China and the EU from 2001 to 2022: A Systematic Review and Meta-Analysis. Foods 2023, 12, 769. [Google Scholar] [CrossRef] [PubMed]
| Groups | Antibiotics | Prevalence (%) | Country | Reference |
|
Quinolones + Fluoroquinolones |
Ciprofloxacin | 18,9 | China | (Yang et al.,, 2020) |
| 17,24 | Bangladesh | (Rahman et al.., 2018) | ||
| 3,5 | Vietnam | (Ta et al., 2014) | ||
| Nalidixic Acid | 100 | Brazil | (Souza et al., 2020) | |
| 72,3 | China | Yang et al.,, 2020) | ||
| Enrofloxacin | 20 | Brazil | (Souza et al., 2020) | |
| 21,1 | China | (Yang et al.,, 2020) | ||
| Norfloxacin | 0 | Egypt | (Awad et al.,, 2020) | |
| Aminoglycosides | Amikacin | 7,5 | China | (Yang et al.,, 2020) |
| 34,48 | Bengladesh | (Rahman et al.,2018) | ||
| Kanamycin | 19,2 | China | (Yang et al.,, 2020) | |
| 3,1 | Vietnam | (Ta et al., 2014) | ||
| Streptomycin | 95 | Brazil | (Souza et al., 2020) | |
| 48,7 | China | Yang et al.,, 2020) | ||
| 80,65 | Egypt | (Awad et al.,, 2020) | ||
| Gentamicin | 17,9 | China | Yang et al.,, 2020) | |
| 3,23 | Egypt | (Awad et al.,, 2020) | ||
| 13,79 | Bangladesh | (Rahman et al.,2018) | ||
| 5,7 | Vietnam | (Ta et al., 2014) | ||
| Pénicillins | Ampicilin | 85 | Brazil | (Souza et al., 2020) |
| 55 | Chine | (Yang et al.,, 2020) | ||
| 41,6 | Vietnam | (Ta et al., 2014) | ||
| Amoxilin | 85 | Brazil | ((Souza et al., 2020) | |
| 67,8 | Egypt | (Awad et al.,, 2020) | ||
| 44,83 | Bangladesh | (Rahman et al.,2018) | ||
| Carbapenem | Imipenem | 0,3 | China | ((Souza et al., 2020) |
| Cephalosporins | Ceftiofur | 75 | Brazil | (Souza et al., 2020) |
| 14,5 | China | (Yang et al.,, 2020) | ||
| Cefotaxim | 85 | Brazil | (Souza et al., 2020) | |
| 14,8 | China | (Yang et al.,, 2020) | ||
| Cefoxitin | 85 | Brazil | (Souza et al., 2020) | |
| 1,9 | China | (Yang et al.,, 2020) | ||
| Β- Lactam/Β- Lactamase Inhibitor | Amoxilin-Clavulanate |
85 | Brazil | (Souza et al., 2020) |
| 9,7 | China | (Yang et al.,, 2020) | ||
| 83,88 | Egypt | (Awad et al.,, 2020) | ||
| Nitrofurans | Nitrofurantoin | 45 | Brazil | (Souza et al., 2020) |
| Phenicol | Chloramphenicol | 25,8 | China | (Yang et al.,, 2020) |
| 37,4 | Vietnam | (Ta et al., 2014) | ||
| Tetracycline | Tetracycline | 100 | Brazil | (Souza et al., 2020) |
| 47,8 | China | (Yang et al.,, 2020) | ||
| 66,67 | Bangladesh | (Rahman et al.,2018) | ||
| 59,1 | Vietnam | (Ta et al., 2014) | ||
| Sulfonamides | Sulfamethoxazole-Trimethoprim | 93,55 | Egypt | (Awad et al.,, 2020) |
| 75,86 | Bangladesh | (Rahman et al.,2018) | ||
| 34,6 | Vietnam | (Ta et al., 2014) |
| Groups | Antibiotics | Prevalence (%) | Country | Reference |
|---|---|---|---|---|
|
Quinolones and Fluoroquinolones |
Ciprofloxacin | 96 | India | (Hussain et al.., 2017) |
| 26,66 | Égypt | (Moawad et al., 2017) | ||
| 33,33 | Romania | (Dan et al.,2015) | ||
|
Nalidixic acid |
75,5 | Korea | (Kim et al.,., 2020) | |
| 33,33 | Égypt | (Moawad et al.,2017) | ||
| 44,44 | Romania | (Dan et al.,2015) | ||
| Enrofloxacin | 13,33 | Égypt | (Moawad et al.,2017) | |
| Aminoglycosides | Kanamycin | 0 | Romania | (Dan et al.,2015) |
| Streptomycin | 60 | Égypt | (Moawad et al.,2017) | |
| Gentamicin | 11,11 | Romania | (Dan et al.,2015) | |
| 23 | India | (Hussain et al, 2017) | ||
| Penicillins | Ampicilin | 69,1 | Korea | (Kim et al,2020) |
| 80 | Égypt | (Moawad et al, 2017) | ||
| 27,7 | Romania | (Dan et al,2015) | ||
| Amoxilin | 27,7 | Romania | (Dan et al.,2015) | |
| Céphalosporins | Cefotaxim |
40 | Égypt | (Moawad et al.,2017) |
| 0 | Romania | (Dan et al.,2015) | ||
| Ceftazidim | 33,33 | Égypt | (Moawad et al.,2017) | |
| Ceftriaxon | 20 | Égypt | (Moawad et al.,2017) | |
| Β- Lactamase | Amoxilin-Clavulanate | 66,66 | Égypt | (Moawad et al.,2017) |
| Phenicol |
Chloramphenicol |
9 | India | (Hussain et al, 2017) |
| 20 | Égypt | (Moawad et al.,2017) | ||
| 22,22 | Romanie | (Dan et al., 2015) | ||
| Tetracycline | Tetracycline | 64 | Korea | (Kim. et al.,2020) |
| 80 | Égypt | (Moawad. et al.,2017) | ||
| 93 | India | (Hussain. et al.,2017) | ||
| 66,66 | Romania | (Dan et al.,2015) | ||
| Sulfonamides | Sulfamethoxazole-Trimethoprim | 61 | India | (Hussain. et al.,2017) |
| 66,66 | Égypt | (Moawad et al.,2017) | ||
| 22,22 | Romania | (Dan et al.,2015) |
| Grups | Antibiotics | Prevalence (%) | Country | Reference |
|---|---|---|---|---|
| Beta-lactams | Methicillin | 0 | Italy | (Pesavento et al., 2007) |
| 76,4 | Turkey | (Gundogan et al., 2005) | ||
| Oxacillin | 7,89 | Thaïland | (Akbar et Anal., 2013) | |
| 70 | Spain | (Miranda. et al.,2008) | ||
| 66,66 | Italy | (Pesavento et al., 2007) | ||
| Ampicillin | 55,26 | Thaïland | (Akbar et Anal., 2013) | |
| 58,33 | Italy | (Pesavento et al.,2007) | ||
| Penicilin G | 25 | Italy | (Pesavento et al., 2007) | |
| 52,9 | Turkey | (Gundogan et al, 2005) | ||
| Cefalotine | 0 | Italy | (Pesavento et al.,2007) | |
| Quinolones | Ciprofloxacin | 7,89 | Thaïland | (Akbar et Anal, 2013) |
| 17,8 | Spain | (Miranda et al., 2008) | ||
| Aminosides (Aminoglycosides) | Gentamicin | 13,15 | Thaïland | (Akbar et Anal, 2013) |
| 0 | Spain | (Miranda et al.,2008) | ||
| 16,66 | Italy | (Pesavento. et al.,2007) | ||
| Streptomycin | 18,42 | Thaïland | (Akbar et Anal, 2013) | |
| Phenicol |
Chloramphenicol | 21,05 | Thaïland | (Akbar et Anal, 2013) |
| 2 | Spain | (Miranda et al.,2008) | ||
| Sulfonamides | Sulfamethoxazole/ trimethoprim |
28,94 | Thaïland | (Akbar et Anal,2013) |
| 8,33 | Italy | (Pesavento. et al.,2007) | ||
| Sulfisoxazole | 24,8 | Spain | (Miranda et al.,2008) | |
| Cyclin | Tetracycline | 44,73 | Thaïland | (Akbar et Anal,2013) |
| 8,33 | Italy | (Pesavento et al.,, 2007) | ||
| Doxycycline | 58,4 | Spain | (Miranda et al.,2008) | |
| Lincosamides | Clindamycin | 67,3 | Spain | (Miranda et al,2008) |
| 8,33 | Italy | (Pesavento et al,2007) | ||
| Macrolides | Erythromycin | 20,8 | Spain | (Miranda. et al.,2008) |
| 8,33 | Italy | (Pesavento et al., 2007) | ||
| 5,8 | Turkey | (Gundogan et al., 2005) | ||
| Nitrofurans | Nitrofurantoïn | 28,7 | Spain | (Miranda et al.,2008) |
| Glycopeptides | Teicoplanin | 0 | Italy | (Pesavento. et al.,2007) |
| Vancomycin | 0 | Italy | (Pesavento et al.,2007) | |
| Polypeptides | Bacitracin | 100 | Turkey | (Gundogan et al.,2005) |
| Grups | Antibiotics | Prevalence ( %) |
Country | Reference |
|---|---|---|---|---|
| Beta-lactams | Oxacillin | 82,9 | Japan | (Maung et al.,., 2019) |
| Ampicillin | 27 | Turkey | (Gucukoglu et al., 2020) | |
| 3,63 | Turkey | (Cadirci et al., 2020) | ||
| 0 | Japan | (Maung et al., 2019) | ||
| Penicilin G | 12,5 | Turkey | (Gucukoglu et al., 2020) | |
| 18,18 | Turkey | (Cadirci et al., 2020) | ||
| Amoxicillin/ Clavunate |
9,3 | Turkey | (Gucukoglu et al., 2020) | |
| 1,81 | Turkey | (Cadirci et al., 2020) | ||
| Cefoxitin | 100 | Japan | (Maung et al., 2019) | |
| Phenicol |
Chloramphenicol |
3,1 | Turkey | (Gucukoglu et al., 2020) |
| 14,54 | Turkey | (Cadirci et al., 2020) | ||
| Sulfonamides | Sulfamethoxazole/ Trimethoprim |
13,5 | Turkey | (Gucukoglu et al., 2020) |
| 45,45 | Turkey | (Cadirci et al., 2020) | ||
| Cyclin |
Tetracycline |
14,5 | Turkey | (Gucukoglu et al., 2020) |
| 3,63 | Turkey | (Cadirci et al., 2020) | ||
| Oxytetracycline | 5,2 | Turkey | (Gucukoglu et al., 2020) | |
| 1,81 | Turkey | (Cadirci et al., 2020) | ||
| Macrolides | Erythromycin | 4,1 | Turkey | (Gucukoglu et al., 2020) |
| 1,81 | Turkey | (Cadirci et al., 2020) | ||
| Glycopeptides | Vancomycin | 7,2 | Turkey | (Gucukoglu et al., 2020) |
| Carbapinem | Merpenem | 23,9 | Turkey | (Gucukoglu et al., 2020) |
| 14,54 | Turkey | (Cadirci et al., 2020) | ||
| Cephalosporin | Céfoxitin | 100 | Japan | (Maung et al., 2019) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
