Submitted:
03 February 2026
Posted:
04 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Canonical Y-705-Mediated STAT3 Signaling in Cancer
3. STAT3 Alternative Subcellular Localizations and Non-Canonical Functions
4. Roles of STAT3 S727 Phosphorylation in Cancer
5. p-S727 STAT3 Activities in BC and TNBC
6. Targeting Mitochondria-Associated STAT3 S727 Signaling
7. Targeting STAT3 S727 Phosphorylation in TNBC
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADT ALM AR BC BM-MSC BRET BTP CCR1 CCRCC CIN CLL CSC EC EGFR EMT ENZ ER ER ETC FP GAS GBM GPCR HAT HER2 HIF-1α IHC IL-6 LC LDHC LIFR MAM MET MFS MLS MM MMP MMTV MPA NSA NSCLC OS PCa PIAS3 PR PSE2 PTM PTP PV RFS ROS S727 S727A SERM SPTA SOCS SPR STAT3 STAT3-C TKI TMZ TNBC VEGF |
Androgen Deprivation Therapy Acral Lentiginous Melanoma Androgen Receptor Breast Cancer Bone Marrow-derived Mesenchymal Stem Cell Bioluminescence Resonance Energy Transfer Benzothiophene CC motif Chemokine Receptor 1 Clear Cell Renal Cell Carcinoma Cervical Intraepithelial Neoplasia Chronic Lymphocytic Leukemia Cancer Stem Cells Endometrial Cancer Epidermal Growth Factor Receptor Epithelial Mesenchymal Transition Enzalutamide Estrogen Receptor Endoplasmic Reticulum Electron Transport Chain Fluorescence Polarization Γ-Activated Sequence Glioblastoma G Protein-Coupled Receptor Histone Acetyltransferase Human Estrogen Receptor 2 Hypoxia-inducible factor 1α Immunohistochemistry Interleukin 6 Lung Cancer Lactate Dehydrogenase C Leukemia Inhibitory Factor Receptor Mitochondria-Associated Membranes Mesenchymal Epithelial Transition Metastasis-Free Survival Mitochondria Localization Sequence Multiple Myeloma Matrix Metalloproteinases Mouse Mammary Tumor Virus Medroxy Progesterone Acetate Niclosamide Non-Small Cell Lung Carcinoma Overall Survival Prostate Cancer Protein Inhibitor of Activated STAT 3 Progesterone Receptor Pulchinenoside E2 Post Translational Modification Protein Tyrosine Phosphatases Phospho-Valproic acid Relapse-Free Survival Reactive Oxygen Species Serine 727 Serine 727 Alanine Selective Estrogen Receptor Modulator Sculponeatin A Suppressors Of Cytokines Signaling Surface Plasmon Resonance Signal Transducer and Activator of Transcription 3 Constitutively active Signal Transducer and Activator of Transcription 3 Tyrosine Kinase Inhibitor Temozolomide Triple-Negative Breast Cancer Vascular Endothelial Growth Factor |
| Y705 Y705F |
Tyrosine 705 Tyrosine 705 Phenylalanine |
References
- Yu, H; Pardoll, D; Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Darnell, JE, Jr. STATs and gene regulation. Science 1997, 277, 1630–1635. [Google Scholar] [CrossRef]
- Bromberg, JF; Wrzeszczynska, MH; Devgan, G; Zhao, Y; Pestell, RG; Albanese, C; et al. Stat3 as an oncogene. Cell 1999, 98, 295–303. [Google Scholar] [CrossRef]
- Schindler, C; Levy, DE; Decker, T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007, 282, 20059–20063. [Google Scholar] [CrossRef]
- Krebs, DL; Hilton, DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001, 19, 378–387. [Google Scholar] [CrossRef]
- Xu, D; Qu, CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 2008, 13, 4925–4932. [Google Scholar] [CrossRef]
- Levy, DE; Darnell, JE, Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002, 3, 651–662. [Google Scholar] [CrossRef]
- Avalle, L; Camporeale, A; Camperi, A; Poli, V. STAT3 in cancer: A double edged sword. Cytokine 2017, 98, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Tolomeo, M; Cascio, A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Levy, DE; Inghirami, G. STAT3: a multifaceted oncogene. Proc Natl Acad Sci U S A 2006, 103, 10151–10152. [Google Scholar] [CrossRef]
- Demaria, M; Camporeale, A; Poli, V. STAT3 and metabolism: how many ways to use a single molecule? Int J Cancer 2014, 135, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Demaria, M; Misale, S; Giorgi, C; Miano, V; Camporeale, A; Campisi, J; et al. STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death Differ 2012, 19, 1390–1397. [Google Scholar] [CrossRef]
- Gough, DJ; Marie, IJ; Lobry, C; Aifantis, I; Levy, DE. STAT3 supports experimental K-RasG12D-induced murine myeloproliferative neoplasms dependent on serine phosphorylation. Blood 2014, 124, 2252–2261. [Google Scholar] [CrossRef]
- Schuringa, JJ; Jonk, LJ; Dokter, WH; Vellenga, E; Kruijer, W. Interleukin-6-induced STAT3 transactivation and Ser727 phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components. Biochem J 2000, 347 Pt 1, 89–96. [Google Scholar] [CrossRef]
- Alhayyani, S; McLeod, L; West, AC; Balic, JJ; Hodges, C; Yu, L; et al. Oncogenic dependency on STAT3 serine phosphorylation in KRAS mutant lung cancer. Oncogene 2022, 41, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y; Dong, Z; Liu, K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J Exp Clin Cancer Res 2024, 43, 23. [Google Scholar] [CrossRef]
- Wegrzyn, J; Potla, R; Chwae, YJ; Sepuri, NB; Zhang, Q; Koeck, T; et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009, 323, 793–797. [Google Scholar] [CrossRef]
- Avalle, L; Poli, V. Nucleus, Mitochondrion, or Reticulum? STAT3 à La Carte. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Avalle, L; Camporeale, A; Morciano, G; Caroccia, N; Ghetti, E; Orecchia, V; et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca(2+) fluxes and apoptotic responses. Cell Death Differ 2019, 26, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Su, Y; Huang, X; Huang, Z; Huang, T; Xu, Y; Yi, C. STAT3 Localizes in Mitochondria-Associated ER Membranes Instead of in Mitochondria. Front Cell Dev Biol 2020, 8, 274. [Google Scholar] [CrossRef]
- Gough, DJ; Corlett, A; Schlessinger, K; Wegrzyn, J; Larner, AC; Levy, DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 2009, 324, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Decker, T; Kovarik, P. Serine phosphorylation of STATs. Oncogene 2000, 19, 2628–2637. [Google Scholar] [CrossRef]
- Shen, Y; Schlessinger, K; Zhu, X; Meffre, E; Quimby, F; Levy, DE; et al. Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. Mol Cell Biol 2004, 24, 407–419. [Google Scholar] [CrossRef]
- Zhang, Q; Raje, V; Yakovlev, VA; Yacoub, A; Szczepanek, K; Meier, J; et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 2013, 288, 31280–31288. [Google Scholar] [CrossRef]
- Tkach, M; Rosemblit, C; Rivas, MA; Proietti, CJ; Diaz Flaque, MC; Mercogliano, MF; et al. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocr Relat Cancer 2013, 20, 197–212. [Google Scholar] [CrossRef]
- Zhou, J; Wulfkuhle, J; Zhang, H; Gu, P; Yang, Y; Deng, J; et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 2007, 104, 16158–16163. [Google Scholar] [CrossRef]
- Chung, J; Uchida, E; Grammer, TC; Blenis, J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997, 17, 6508–6516. [Google Scholar] [CrossRef]
- Tesoriere, A; Dinarello, A; Argenton, F. The Roles of Post-Translational Modifications in STAT3 Biological Activities and Functions. Biomedicines 2021, 9. [Google Scholar] [CrossRef]
- Qin, HR; Kim, HJ; Kim, JY; Hurt, EM; Klarmann, GJ; Kawasaki, BT; et al. Activation of signal transducer and activator of transcription 3 through a phosphomimetic serine 727 promotes prostate tumorigenesis independent of tyrosine 705 phosphorylation. Cancer Res 2008, 68, 7736–7741. [Google Scholar] [CrossRef] [PubMed]
- Chen, L; Chen, D; Li, J; He, L; Chen, T; Song, D; et al. Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells. Cell Death Dis 2022, 13, 1007. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, I; Pensa, S; Pannellini, T; Quaglino, E; Maritano, D; Demaria, M; et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res 2010, 70, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Qin, JJ; Yan, L; Zhang, J; Zhang, WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res 2019, 38, 195. [Google Scholar] [CrossRef] [PubMed]
- Bai, X; Ni, J; Beretov, J; Graham, P; Li, Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles' heel? Cancer Lett 2021, 497, 100–111. [Google Scholar] [CrossRef]
- Zagami, P; Carey, LA. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef]
- Zhong, Y; Deng, L; Shi, S; Huang, QY; Ou-Yang, SM; Mo, JS; et al. The novel STAT3 inhibitor WZ-2-033 causes regression of human triple-negative breast cancer and gastric cancer xenografts. Acta Pharmacol Sin 2022, 43, 1013–1023. [Google Scholar] [CrossRef]
- Park, SK; Byun, WS; Lee, S; Han, YT; Jeong, YS; Jang, K; et al. A novel small molecule STAT3 inhibitor SLSI-1216 suppresses proliferation and tumor growth of triple-negative breast cancer cells through apoptotic induction. Biochem Pharmacol 2020, 178, 114053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y; Wang, Q; Tang, CH; Chen, HD; Hu, GN; Shao, JK; et al. p-STAT3 expression in breast cancer correlates negatively with tumor size and HER2 status. Medicine (Baltimore) 2021, 100, e25124. [Google Scholar] [CrossRef]
- Yeh, YT; Ou-Yang, F; Chen, IF; Yang, SF; Wang, YY; Chuang, HY; et al. STAT3 ser727 phosphorylation and its association with negative estrogen receptor status in breast infiltrating ductal carcinoma. Int J Cancer 2006, 118, 2943–2947. [Google Scholar] [CrossRef]
- Radenkovic, S; Konjevic, G; Gavrilovic, D; Stojanovic-Rundic, S; Plesinac-Karapandzic, V; Stevanovic, P; et al. pSTAT3 expression associated with survival and mammographic density of breast cancer patients. Pathol Res Pract 2019, 215, 366–372. [Google Scholar] [CrossRef]
- Stenckova, M; Nenutil, R; Vojtesek, B; Coates, PJ. Stat3 Tyrosine 705 and Serine 727 Phosphorylation Associate With Clinicopathological Characteristics and Distinct Tumor Cell Phenotypes in Triple-Negative Breast Cancer. Pathol Oncol Res 2022, 28, 1610592. [Google Scholar] [CrossRef]
- Dimri, S; Malhotra, R; Shet, T; Mokal, S; Gupta, S; De, A. Noncanonical pS727 post translational modification dictates major STAT3 activation and downstream functions in breast cancer. Exp Cell Res 2020, 396, 112313. [Google Scholar] [CrossRef]
- Bromberg, JF; Horvath, CM; Besser, D; Lathem, WW; Darnell, JE, Jr. Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 1998, 18, 2553–2558. [Google Scholar] [CrossRef]
- Avalle, L; Pensa, S; Regis, G; Novelli, F; Poli, V. STAT1 and STAT3 in tumorigenesis: A matter of balance. Jakstat 2012, 1, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Yu, H; Lee, H; Herrmann, A; Buettner, R; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014, 14, 736–746. [Google Scholar] [CrossRef]
- Demaria, M; Giorgi, C; Lebiedzinska, M; Esposito, G; D'Angeli, L; Bartoli, A; et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY) 2010, 2, 823–842. [Google Scholar] [CrossRef]
- Hughes, K; Watson, CJ. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int J Mol Sci 2018, 19. [Google Scholar] [CrossRef]
- Yang, PL; Liu, LX; Li, EM; Xu, LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Avalle, L; Raggi, L; Monteleone, E; Savino, A; Viavattene, D; Statello, L; et al. STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene 2022, 41, 1456–1467. [Google Scholar] [CrossRef] [PubMed]
- Bullock, E; Rozyczko, A; Shabbir, S; Tsoupi, I; Young, AIJ; Travnickova, J; et al. Cancer-associated fibroblast driven paracrine IL-6/STAT3 signaling promotes migration and dissemination in invasive lobular carcinoma. Breast Cancer Res 2025, 27, 121. [Google Scholar] [CrossRef]
- Godugu, D; Chilamakuri, R; Agarwal, S. STAT3 axis in cancer and cancer stem cells: From oncogenesis to targeted therapies. Biochim Biophys Acta Rev Cancer 2025, 1880, 189461. [Google Scholar] [CrossRef]
- Wei, S; Li, J; Tang, M; Zhang, K; Gao, X; Fang, L; et al. STAT3 and p63 in the Regulation of Cancer Stemness. Front Genet 2022, 13, 909251. [Google Scholar] [CrossRef]
- Galoczova, M; Coates, P; Vojtesek, B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018, 23, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, T; Niu, G; Kortylewski, M; Burdelya, L; Shain, K; Zhang, S; et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004, 10, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Vallania, F; Schiavone, D; Dewilde, S; Pupo, E; Garbay, S; Calogero, R; et al. Genome-wide discovery of functional transcription factor binding sites by comparative genomics: the case of Stat3. Proc Natl Acad Sci U S A 2009, 106, 5117–5122. [Google Scholar] [CrossRef] [PubMed]
- Bowman, T; Garcia, R; Turkson, J; Jove, R. STATs in oncogenesis. Oncogene 2000, 19, 2474–2488. [Google Scholar] [CrossRef]
- Dong, J; Cheng, XD; Zhang, WD; Qin, JJ. Recent Update on Development of Small-Molecule STAT3 Inhibitors for Cancer Therapy: From Phosphorylation Inhibition to Protein Degradation. J Med Chem 2021, 64, 8884–8915. [Google Scholar] [CrossRef]
- Yang, J; Wang, L; Guan, X; Qin, JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022, 182, 106357. [Google Scholar] [CrossRef]
- Berkley, K; Zalejski, J; Sharma, A. Targeting STAT3 for Cancer Therapy: Focusing on Y705, S727, or Dual Inhibition? Cancers (Basel) 2025, 17. [Google Scholar] [CrossRef]
- Wen, Z; Zhong, Z; Darnell, JE, Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995, 82, 241–250. [Google Scholar] [CrossRef]
- Tammineni, P; Anugula, C; Mohammed, F; Anjaneyulu, M; Larner, AC; Sepuri, NB. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem 2013, 288, 4723–4732. [Google Scholar] [CrossRef]
- Marié, IJ; Lahiri, T; Önder, Ö; Elenitoba-Johnson, KSJ; Levy, DE. Structural determinants of mitochondrial STAT3 targeting and function. Mitochondrial Commun 2024, 2, 1–13. [Google Scholar] [CrossRef]
- Peron, M; Dinarello, A; Meneghetti, G; Martorano, L; Betto, RM; Facchinello, N; et al. Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development 2021, 148. [Google Scholar] [CrossRef]
- Carbognin, E; Betto, RM; Soriano, ME; Smith, AG; Martello, G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. Embo j 2016, 35, 618–634. [Google Scholar] [CrossRef]
- Yokogami, K; Wakisaka, S; Avruch, J; Reeves, SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 2000, 10, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, J; Campoy, I; Duran, M; Nemours, S; Areny, A; Vall-Palomar, M; et al. STAT3 phosphorylation at serine 727 activates specific genetic programs and promotes clear cell renal cell carcinoma (ccRCC) aggressiveness. Sci Rep 2023, 13, 19552. [Google Scholar] [CrossRef]
- Jiang, RY; Zhu, JY; Zhang, HP; Yu, Y; Dong, ZX; Zhou, HH; et al. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024, 24, 356. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D; Reilley, MJ; Aponte, AM; Wang, G; Boja, E; Gucek, M; et al. Stoichiometry of STAT3 and mitochondrial proteins: Implications for the regulation of oxidative phosphorylation by protein-protein interactions. J Biol Chem 2010, 285, 23532–23536. [Google Scholar] [CrossRef] [PubMed]
- Xu, YS; Liang, JJ; Wang, Y; Zhao, XJ; Xu, L; Xu, YY; et al. STAT3 Undergoes Acetylation-dependent Mitochondrial Translocation to Regulate Pyruvate Metabolism. Sci Rep 2016, 6, 39517. [Google Scholar] [CrossRef]
- Meier, JA; Hyun, M; Cantwell, M; Raza, A; Mertens, C; Raje, V; et al. Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci Signal 2017, 10. [Google Scholar] [CrossRef]
- Lahiri, T; Brambilla, L; Andrade, J; Askenazi, M; Ueberheide, B; Levy, DE. Mitochondrial STAT3 regulates antioxidant gene expression through complex I-derived NAD in triple negative breast cancer. Mol Oncol 2021, 15, 1432–1449. [Google Scholar] [CrossRef]
- Mendes, CC; Gomes, DA; Thompson, M; Souto, NC; Goes, TS; Goes, AM; et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 2005, 280, 40892–40900. [Google Scholar] [CrossRef]
- Dhaouadi, N; Vitto, VAM; Pinton, P; Galluzzi, L; Marchi, S. Ca(2+) signaling and cell death. Cell Calcium 2023, 113, 102759. [Google Scholar] [CrossRef]
- Shen, S; Niso-Santano, M; Adjemian, S; Takehara, T; Malik, SA; Minoux, H; et al. Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 2012, 48, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Liu, B; Palmfeldt, J; Lin, L; Colaço, A; Clemmensen, KKB; Huang, J; et al. STAT3 associates with vacuolar H+-ATPase and regulates cytosolic and lysosomal pH. Cell Research 2018, 28, 996–1012. [Google Scholar] [CrossRef]
- Liu, B; Chen, R; Zhang, Y; Huang, J; Luo, Y; Rosthøj, S; et al. Cationic amphiphilic antihistamines inhibit STAT3 via Ca(2+)-dependent lysosomal H(+) efflux. Cell Rep 2023, 42, 112137. [Google Scholar] [CrossRef]
- Martínez-Fábregas, J; Prescott, A; van Kasteren, S; Pedrioli, DL; McLean, I; Moles, A; et al. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nature Communications 2018, 9, 5343. [Google Scholar] [CrossRef] [PubMed]
- Kreuzaler, PA; Staniszewska, AD; Li, W; Omidvar, N; Kedjouar, B; Turkson, J; et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 2011, 13, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, TJ; Lloyd-Lewis, B; Resemann, HK; Ramos-Montoya, A; Skepper, J; Watson, CJ. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 2014, 16, 1057–1068. [Google Scholar] [CrossRef]
- Shi, D; Tao, J; Man, S; Zhang, N; Ma, L; Guo, L; et al. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2024, 1879, 189207. [Google Scholar] [CrossRef]
- Bialas, P; Kobayashi, T; Hellsten, R; Krzyzanowska, A; Persson, M; Marginean, F; et al. pSTAT3 Expression is Increased in Advanced Prostate Cancer in Post-Initiation of Androgen Deprivation Therapy. Prostate 2025, 85, 252–264. [Google Scholar] [CrossRef]
- Cocchiola, R; Romaniello, D; Grillo, C; Altieri, F; Liberti, M; Magliocca, FM; et al. Analysis of STAT3 post-translational modifications (PTMs) in human prostate cancer with different Gleason Score. Oncotarget 2017, 8, 42560–42570. [Google Scholar] [CrossRef]
- Hsu, FN; Chen, MC; Lin, KC; Peng, YT; Li, PC; Lin, E; et al. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells. Am J Physiol Endocrinol Metab 2013, 305, E975-986. [Google Scholar] [CrossRef]
- Thaper, D; Vahid, S; Kaur, R; Kumar, S; Nouruzi, S; Bishop, JL; et al. Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Scientific Reports 2018, 8, 17307. [Google Scholar] [CrossRef]
- Yang, SF; Yuan, SS; Yeh, YT; Wu, MT; Su, JH; Hung, SC; et al. The role of p-STAT3 (ser727) revealed by its association with Ki-67 in cervical intraepithelial neoplasia. Gynecol Oncol 2005, 98, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Tierney, BJ; McCann, GA; Naidu, S; Rath, KS; Saini, U; Wanner, R; et al. Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecol Oncol 2014, 135, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M; Oka, M; Iwasaki, T; Fukami, Y; Nishigori, C. Role and regulation of STAT3 phosphorylation at Ser727 in melanocytes and melanoma cells. J Invest Dermatol 2012, 132, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Cuadros, T; Trilla, E; Sarro, E; Vila, MR; Vilardell, J; de Torres, I; et al. HAVCR/KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res 2014, 74, 1416–1428. [Google Scholar] [CrossRef]
- Arevalo, J; Lorente, D; Trilla, E; Salcedo, MT; Morote, J; Meseguer, A. Nuclear and cytosolic pS727-STAT3 levels correlate with overall survival of patients affected by clear cell renal cell carcinoma (ccRCC). Sci Rep 2021, 11, 6957. [Google Scholar] [CrossRef]
- Lin, WH; Chang, YW; Hong, MX; Hsu, TC; Lee, KC; Lin, C; et al. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT-MET switch and cancer metastasis. Oncogene 2021, 40, 791–805. [Google Scholar] [CrossRef]
- Ouédraogo, ZG; Müller-Barthélémy, M; Kemeny, JL; Dedieu, V; Biau, J; Khalil, T; et al. STAT3 Serine 727 Phosphorylation: A Relevant Target to Radiosensitize Human Glioblastoma. Brain Pathol 2016, 26, 18–30. [Google Scholar] [CrossRef]
- Lin, GS; Chen, YP; Lin, ZX; Wang, XF; Zheng, ZQ; Chen, L. STAT3 serine 727 phosphorylation influences clinical outcome in glioblastoma. Int J Clin Exp Pathol 2014, 7, 3141–3149. [Google Scholar]
- Lee, ES; Ko, KK; Joe, YA; Kang, SG; Hong, YK. Inhibition of STAT3 reverses drug resistance acquired in temozolomide-resistant human glioma cells. Oncol Lett 2011, 2, 115–121. [Google Scholar] [CrossRef]
- Ma, JH; Qin, L; Li, X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal 2020, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Hazan-Halevy, I; Harris, D; Liu, Z; Liu, J; Li, P; Chen, X; et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 2010, 115, 2852–2863. [Google Scholar] [CrossRef] [PubMed]
- Naik, A; Thomas, R; Sikhondze, M; Babiker, A; Lattab, B; Qasem, H; et al. The LDHC-STAT3 Signaling Network Is a Key Regulator of Basal-like Breast Cancer Cell Survival. Cancers (Basel) 2024, 16. [Google Scholar] [CrossRef] [PubMed]
- Naik, A; Decock, J. Targeting of lactate dehydrogenase C dysregulates the cell cycle and sensitizes breast cancer cells to DNA damage response targeted therapy. Mol Oncol 2022, 16, 885–903. [Google Scholar] [CrossRef]
- Elsarraj, HS; Hong, Y; Limback, D; Zhao, R; Berger, J; Bishop, SC; et al. BCL9/STAT3 regulation of transcriptional enhancer networks promote DCIS progression. NPJ Breast Cancer 2020, 6, 12. [Google Scholar] [CrossRef]
- Shin, SY; Lee, DH; Lee, J; Choi, C; Kim, JY; Nam, JS; et al. C-C motif chemokine receptor 1 (CCR1) is a target of the EGF-AKT-mTOR-STAT3 signaling axis in breast cancer cells. Oncotarget 2017, 8, 94591–94605. [Google Scholar] [CrossRef]
- Mackenzie, GG; Huang, L; Alston, N; Ouyang, N; Vrankova, K; Mattheolabakis, G; et al. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One 2013, 8, e61532. [Google Scholar] [CrossRef]
- Boengler, K; Hilfiker-Kleiner, D; Heusch, G; Schulz, R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 2010, 105, 771–785. [Google Scholar] [CrossRef]
- Cai, G; Yu, W; Song, D; Zhang, W; Guo, J; Zhu, J; et al. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur J Med Chem 2019, 174, 236–251. [Google Scholar] [CrossRef]
- Brambilla, L; Lahiri, T; Cammer, M; Levy, DE. STAT3 Inhibitor OPB-51602 Is Cytotoxic to Tumor Cells Through Inhibition of Complex I and ROS Induction. iScience 2020, 23, 101822. [Google Scholar] [CrossRef] [PubMed]
- Genini, D; Brambilla, L; Laurini, E; Merulla, J; Civenni, G; Pandit, S; et al. Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Proc Natl Acad Sci U S A 2017, 114, E4924–E4933. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, L; Genini, D; Laurini, E; Merulla, J; Perez, L; Fermeglia, M; et al. Hitting the right spot: Mechanism of action of OPB-31121, a novel and potent inhibitor of the Signal Transducer and Activator of Transcription 3 (STAT3). Mol Oncol 2015, 9, 1194–1206. [Google Scholar] [CrossRef]
- Bendell, JC; Hong, DS; Burris, HA, 3rd; Naing, A; Jones, SF; Falchook, G; et al. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 2014, 74, 125–130. [Google Scholar] [CrossRef]
- Wan, F; Qian, C; Liu, X; Zhong, Y; Peng, W; Zhang, L; et al. Sculponeatin A induces mitochondrial dysfunction in non-small cell lung cancer through WWP2-mediated degradation of mitochondrial STAT3. Br J Pharmacol 2025, 182, 2662–2681. [Google Scholar] [CrossRef]
- Peng, P; Ren, Y; Wan, F; Tan, M; Wu, H; Shen, J; et al. Sculponeatin A promotes the ETS1-SYVN1 interaction to induce SLC7A11/xCT-dependent ferroptosis in breast cancer. Phytomedicine 2023, 117, 154921. [Google Scholar] [CrossRef]
- Li, Y; Li, PK; Roberts, MJ; Arend, RC; Samant, RS; Buchsbaum, DJ. Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett 2014, 349, 8–14. [Google Scholar] [CrossRef]
- Gao, D; Jin, N; Fu, Y; Zhu, Y; Wang, Y; Wang, T; et al. Rational drug design of benzothiazole-based derivatives as potent signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors. Eur J Med Chem 2021, 216, 113333. [Google Scholar] [CrossRef]
- Yang, Z; Xu, H; Yang, Y; Duan, C; Zhang, P; Wang, Y; et al. Synthesis and evaluation of naphthalene derivatives as potent STAT3 inhibitors and agents against triple-negative breast cancer growth and metastasis. Breast Cancer Res Treat 2023, 197, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, MX; Liu, X; Zhang, HL; Xu, H; Ma, X; Yang, Y; et al. A novel synthesised STAT3 inhibitor exerts potent anti-tumour activity by inducing lysosome-dependent cell death. Br J Pharmacol 2025, 182, 4041–4057. [Google Scholar] [CrossRef]
- Chen, H; Bian, A; Zhou, W; Miao, Y; Ye, J; Li, J; et al. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS Cent Sci 2024, 10, 579–594. [Google Scholar] [CrossRef] [PubMed]
- Liu, X; Huang, J; Xie, Y; Zhou, Y; Wang, R; Lou, J. Napabucasin Attenuates Resistance of Breast Cancer Cells to Tamoxifen by Reducing Stem Cell-Like Properties. Med Sci Monit 2019, 25, 8905–8912. [Google Scholar] [CrossRef]
- He, P; Miao, Y; Sun, Y; Bian, A; Jin, W; Chen, H; et al. Discovery of a Novel Potent STAT3 Inhibitor HP590 with Dual p-Tyr(705)/Ser(727) Inhibitory Activity for Gastric Cancer Treatment. J Med Chem 2022, 65, 12650–12674. [Google Scholar] [CrossRef] [PubMed]
- He, P; Bian, A; Miao, Y; Jin, W; Chen, H; He, J; et al. Discovery of a Highly Potent and Orally Bioavailable STAT3 Dual Phosphorylation Inhibitor for Pancreatic Cancer Treatment. J Med Chem 2022, 65, 15487–15511. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D; Shu, J; Gao, B; Yu, H; Liu, K; Zheng, M; et al. Pulchinenoside E2: A dual-functional STAT3 and autophagy inhibitor with potent anti-metastatic activity in triple-negative breast cancer. Phytomedicine 2025, 148, 157485. [Google Scholar] [CrossRef]


| Tumor type | Patients (n) | p-S727 STAT3 + | Correlation with grade | Correlation with OS | Correlation with MFS | Reference |
|---|---|---|---|---|---|---|
| PCa | 20 | 65% | Pos (p=0.05) | N/A | N/A | [29] |
| PCa | 111 | 49% | N/A | Neg (p=0.013) | Neg (p=0.034) | [80] |
| CIN | 56 | 100% | Pos (p<0.001) | N/A | N/A | [84] |
| ALM | 15 | 73% | N/A | N/A | N/A | [86] |
| ccRCC | 98 | N/A | Pos (p<0.01) | Neg (p<0.001) | N/A | [87] |
| ccRCC | 82 | N/A | N/A | Neg (p=0.002) | N/A | [88] |
| LC | 40 | N/A | Pos | Neg (p=0.017) | N/A | [89] |
| GBM | 30 | 100% | N/A | Not affected | N/A | [90] |
| GBM | 88 | 70% | N/A | Neg (p=0.002) | N/A | [91] |
| BC | 68 | 62% | Pos (p=0.024) | N/A | N/A | [38] |
| BC | 48 | 56% | N/A | N/A | N/A | [25] |
| TNBC | 173 | N/A | Neg (p=0.016) | Not affected | N/A | [40] |
| TNBC | 76 | 80% | N/A | N/A | N/A | [41] |
| Compound | Domain | p-S727 | p-Y705 | Exp. system | Primary tumors | Metastases | Reference |
|---|---|---|---|---|---|---|---|
| 7a | N/A | Yes | Yes | 4T1 | < | N/A | [101] |
| OPB-51602 | SH2 | Yes | Yes | N/A | N/A | [102] | |
| SLSI-1216 | SH2 | Yes | Yes | MDA-MB-231 | < | N/A | [36] |
| Niclosamide (NSA) | N/A | Yes | Yes | MDA-MB-231 | < | < (LU, BN) | [41] |
| B19 | SH2 | Yes | Yes | N/A | N/A | [109] | |
| RDp002 | SH2 | Yes | Yes | MDA-MB-468 4T1 |
< | < LU dissemination | [111] |
| Y002 | SH2 | Yes | Yes | MDA-MB-231 | < | N/A | [112] |
| PSE2 | SH2 | Yes | Yes | MDA-MB-231 | N/A | SUP (LU, LV) | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
