Submitted:
02 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Acute and Chronic Immune Responses to SARS-CoV-2
2.1. Acute Immune Activation and Cytokine Storm
2.2. Transition from Acute to Chronic Immune Dysregulation
2.3. Persistent Inflammation and Immune Remodeling in Long COVID
2.4. T-Cell Dysfunction, Exhaustion and Impaired Immune Surveillance
3. SARS-CoV-2 Infection of Cancer Cells
3.1. Evidence for Direct or Abortive Infection of Cancer Cells
3.2. Biological and Clinical Implications of Viral–Tumor Interactions
4. SARS-CoV-2 Viral Protein–Driven Modulation of Oncogenic Signaling
4.1. SARS-CoV-2 Spike (S1) Protein–Mediated Signaling and Inflammatory Crosstalk
4.2. SARS-CoV-2 Membrane (M) Protein and Intracellular Stress Response
5. Oncogenic and Pro-Tumoregenic Pathways Activated by SARS-CoV-2
5.1. MAPK/ERK Pathway
5.2. NF-κB, JAK/STAT3 and TLR2-Mediated Innate Activation Pathways
6. Immune Evasion Mechanisms Shared by SARS-CoV-2 and Cancer
6.1. Immune Checkpoint Upregulation and T Cell Inhibition
6.2. Downregulation of Antigen Presentation Machinery, Establishing Immunosuppressive Microenvironment and Metabolic Reprogramming
7. Tissue-Specific Effects and Divergent Cancer Responses
8. SARS-CoV-2 Vaccination as a Modifier of Cancer-Relevant Immune Pathways
9. Clinical Implications
10. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Mohandas, S. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). In NLM (Medline); 26 May 2023. [Google Scholar] [CrossRef]
- Echchannaoui, H.; Perreau, M.; Schild, H.; Theobald, M. Editorial: Understanding convergent evasion mechanisms in cancer and chronic infection: implications for immunotherapy. In Frontiers Media SA; 2024. [Google Scholar] [CrossRef]
- Dalton-Griffin, L.; Kellam, P. Infectious causes of cancer and their detection. J. Biol. 2009, vol. 8(no. 7), 67. [Google Scholar] [CrossRef]
- Ogarek, N.; Oboza, P.; Olszanecka-Glinianowicz, M.; Kocelak, P. SARS-CoV-2 infection as a potential risk factor for the development of cancer. Front. Mol. Biosci. 2023, vol. 10, 1260776. [Google Scholar] [CrossRef]
- Tay, M. Z.; Poh, C. M.; Rénia, L.; MacAry, P. A.; Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology 2020, 2020 20:6, vol. 20(no. 6), 363–374. [Google Scholar] [CrossRef] [PubMed]
- Lowery, S. A.; Sariol, A.; Perlman, S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. In Cell Press; 14 Jul 2021. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L. J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts; John Wiley and Sons Inc, 01 Jul 2020. [Google Scholar] [CrossRef]
- Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2; Elsevier B.V, 01 Oct 2020. [Google Scholar] [CrossRef]
- Bhaskar, S. Cytokine Storm in COVID-19—Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020, vol. 11. [Google Scholar] [CrossRef] [PubMed]
- Rowaiye, B. Attenuating the effects of novel COVID-19 (SARS-CoV-2) infection-induced cytokine storm and the implications. In Dove Medical Press Ltd; 2021. [Google Scholar] [CrossRef]
- Fara, Z. Mitrev; Rosalia, R. A.; Assas, B. M. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines: Cytokine storm: The elements of rage! In Royal Society Publishing; 01 Sep 2020. [Google Scholar] [CrossRef]
- Montazersaheb, S. COVID-19 infection: an overview on cytokine storm and related interventions. In BioMed Central Ltd; 01 Dec 2022. [Google Scholar] [CrossRef]
- Silva, M. J. A. Hyperinflammatory Response in COVID-19: A Systematic Review. 2023, MDPI. [Google Scholar] [CrossRef]
- Rabaan. Role of inflammatory cytokines in covid-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines (Basel). 2021, vol. 9(no. 5). [Google Scholar] [CrossRef]
- Hsu, R. J. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections; Frontiers Media S.A, 07 Apr 2022. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. In Springer Nature; 01 Dec 2021. [Google Scholar] [CrossRef]
- Costela-Ruiz, V. J.; Illescas-Montes, R.; Puerta-Puerta, J. M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. In Elsevier Ltd; 01 Aug 2020. [Google Scholar] [CrossRef]
- Jiang, Y. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. In Ivyspring International Publisher; 2022. [Google Scholar] [CrossRef]
- Khan, S.; Shafiei, M. S.; Longoria, C.; Schoggins, J. W.; Savani, R. C.; Zaki, H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife 2021, vol. 10. [Google Scholar] [CrossRef] [PubMed]
- Rowaiye, B. Attenuating the effects of novel COVID-19 (SARS-CoV-2) infection-induced cytokine storm and the implications. In Dove Medical Press Ltd; 2021. [Google Scholar] [CrossRef]
- Davitt, E.; Davitt, C.; Mazer, M. B.; Areti, S. S.; Hotchkiss, R. S.; Remy, K. E. COVID-19 disease and immune dysregulation. In Bailliere Tindall Ltd; 01 Sep 2022. [Google Scholar] [CrossRef]
- Mohandas, S. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). In NLM (Medline); 26 May 2023. [Google Scholar] [CrossRef]
- Adhikari. Beyond acute infection: mechanisms underlying post-acute sequelae of COVID-19 (PASC). In John Wiley and Sons Inc; 04 Nov 2024. [Google Scholar] [CrossRef]
- Opsteen, S.; Files, J. K.; Fram, T.; Erdmann, N. The role of immune activation and antigen persistence in acute and long COVID; SAGE Publications Inc, 01 Jun 2023. [Google Scholar] [CrossRef]
- Sherif, Z. A.; Gomez, C. R.; Connors, T. J.; Henrich, T. J.; Reeves, W. B. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). In NLM (Medline); 22 Mar 2023. [Google Scholar] [CrossRef]
- Kallaste. Long COVID and Biomarker Dysregulation—A Shift Toward Immune Exhaustion? Medicina (Lithuania) 2025, vol. 61(no. 6). [Google Scholar] [CrossRef]
- Cruz, T. Persistence of dysfunctional immune response 12 months after SARS-CoV-2 infection and their relationship with pulmonary sequelae and long COVID. Respir. Res. 2025, vol. 26(no. 1). [Google Scholar] [CrossRef]
- Kratzer. Differential decline of SARS-CoV-2-specific antibody levels, innate and adaptive immune cells, and shift of Th1/inflammatory to Th2 serum cytokine levels long after first COVID-19. Allergy: European Journal of Allergy and Clinical Immunology 2024, vol. 79(no. 9), 2482–2501. [Google Scholar] [CrossRef]
- Yin, K. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat. Immunol. 2024, vol. 25(no. 2), 218–225. [Google Scholar] [CrossRef]
- Ryan, F. J. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022, vol. 20(no. 1). [Google Scholar] [CrossRef]
- Low, R. N.; Low, R. J.; Akrami, A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front. Med. (Lausanne). 2023, vol. 10. [Google Scholar] [CrossRef]
- Proal, D.; VanElzakker, M. B. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms; Frontiers Media S.A, 23 Jun 2021. [Google Scholar] [CrossRef]
- Phetsouphanh. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nature Immunology 2022, 2022 23:2, vol. 23(no. 2), 210–216. [Google Scholar] [CrossRef]
- Ong, S. W. X. Persistent symptoms and association with inflammatory cytokine signatures in recovered coronavirus disease 2019 patients. Open Forum Infect. Dis. 2021, vol. 8(no. 6). [Google Scholar] [CrossRef]
- Peluso, M. J. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021, vol. 36(no. 6). [Google Scholar] [CrossRef]
- Saito, S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J. Autoimmun. 2024, vol. 147. [Google Scholar] [CrossRef]
- Islam, M. S.; Wang, Z.; Abdel-Mohsen, M.; Chen, X.; Montaner, L. J. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. In Oxford University Press; 01 Mar 2023. [Google Scholar] [CrossRef]
- Bachiller, S. SARS-CoV-2 post-acute sequelae linked to inflammation via extracellular vesicles. Front. Immunol. vol. 16, 2025. [CrossRef] [PubMed]
- Huang, Z. Blood Biomarkers as Prognostic Indicators for Neurological Injury in COVID-19 Patients: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, vol. 24(no. 21), 15738. [Google Scholar] [CrossRef] [PubMed]
- Ayoubkhani. Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ 2022, vol. 377. [Google Scholar] [CrossRef] [PubMed]
- Diao, B. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, vol. 11. [Google Scholar] [CrossRef]
- Rha, M. S.; Shin, E. C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. In Springer Nature; 01 Oct 2021. [Google Scholar] [CrossRef]
- De Biasi, S. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 2020, vol. 11(no. 1). [Google Scholar] [CrossRef]
- Vazquez-Alejo. Persistent Exhausted T-Cell Immunity after Severe COVID-19: 6-Month Evaluation in a Prospective Observational Study. J. Clin. Med. 2023, vol. 12(no. 10). [Google Scholar] [CrossRef]
- Mishra, K. P.; Singh, M.; Saraswat, D.; Ganju, L.; Varshney, R. Dysfunctional State of T Cells or Exhaustion during Chronic Viral Infections and COVID-19: A Review. In Viral Immunol.; STRING:ARTICLE/CHAPTER: PAGE, May 2022; vol. 35, no. 4, pp. 284–290. [Google Scholar] [CrossRef]
- Chen-Camaño, R.; DeAntonio, R.; López-Vergès, S. T-cell exhaustion in COVID-19: what do we know? In Frontiers Media SA; 2025. [Google Scholar] [CrossRef]
- Arcanjo. Critically Ill Coronavirus Disease 2019 Patients Exhibit Hyperactive Cytokine Responses Associated With Effector Exhausted Senescent T Cells in Acute Infection. Journal of Infectious Diseases 2021, vol. 224(no. 10), 1672–1683. [Google Scholar] [CrossRef]
- Herrmann, M. Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease. Front. Immunol. 2020, vol. 11. [Google Scholar] [CrossRef] [PubMed]
- Kusnadi. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8+ T cells. Sci. Immunol. 2021, vol. 6(no. 55). [Google Scholar] [CrossRef]
- Shahbaz, S. The Quality of SARS-CoV-2-Specific T Cell Functions Differs in Patients with Mild/Moderate versus Severe Disease, and T Cells Expressing Coinhibitory Receptors Are Highly Activated. Available online: https://academic.oup.com/jimmunol/article/207/4/1099/7952611.
- Wiech, M. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front. Immunol. 2022, vol. 13. [Google Scholar] [CrossRef] [PubMed]
- Cimini. Inflammatory Milieu and Specific T-Cell Response Observed Three Months and One Year After SARS-CoV-2 Infection in Long COVID Subjects. Int. J. Mol. Sci. 2025, vol. 26(no. 21). [Google Scholar] [CrossRef] [PubMed]
- Ueland, T. Markers of T cell activation and exhaustion in plasma are associated with persistent symptoms up to 18 months following mild SARS-CoV-2 infection. Front. Immunol. vol. 16, 2025. [CrossRef]
- Smirnova. SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers (Basel). 2023, vol. 15(no. 3). [Google Scholar] [CrossRef]
- Choong, K. SARS-CoV-2 replicates and displays oncolytic properties in clear cell and papillary renal cell carcinoma. PLoS One 2023, vol. 18, no. [Google Scholar] [CrossRef]
- Ramirez, S. Efficient culture of SARS-CoV-2 in human hepatoma cells enhances viability of the virus in human lung cancer cell lines permitting the screening of antiviral compounds. 2020. [Google Scholar] [CrossRef]
- Vizgirda; Underwood, A. P.; Fahnøe, U.; Weis, N.; Ramirez, S.; Bukh, J. Spike substitutions E484D, P812R and Q954H mediate ACE2-independent entry of SARS-CoV-2 across different cell lines. PLoS One 2025, vol. 20. [Google Scholar] [CrossRef]
- Vanhulle, E. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Res. 2022, vol. 203. [Google Scholar] [CrossRef] [PubMed]
- Arora, P. Host cell lectins ASGR1 and DC-SIGN jointly with TMEM106B confer ACE2 independence and imdevimab resistance to SARS-CoV-2 pseudovirus with spike mutation E484D. J. Virol. 2025, vol. 99(no. 2). [Google Scholar] [CrossRef]
- Lee, C. Y. Prolonged SARS-CoV-2 Infection in Patients with Lymphoid Malignancies. Cancer Discov. 2022, vol. 12(no. 1), 62–73. [Google Scholar] [CrossRef]
- Machkovech, M. Persistent SARS-CoV-2 infection: significance and implications. In Elsevier Ltd; 01 Jul 2024. [Google Scholar] [CrossRef]
- Lau, M. C. Case report: Understanding the impact of persistent tissue-localization of SARS-CoV-2 on immune response activity via spatial transcriptomic analysis of two cancer patients with COVID-19 co-morbidity. Front. Immunol. 2022, vol. 13. [Google Scholar] [CrossRef]
- Jafarzadeh. SARS-CoV-2 Infection: A Possible Risk Factor for Incidence and Recurrence of Cancers. 2022. [Google Scholar] [CrossRef]
- Ogarek, N.; Oboza, P.; Olszanecka-Glinianowicz, M.; Kocelak, P. SARS-CoV-2 infection as a potential risk factor for the development of cancer. In Frontiers Media SA; 2023. [Google Scholar] [CrossRef]
- Malkani, N.; Rashid, M. U. SARS-COV-2 infection and lung tumor microenvironment; Springer Science and Business Media B.V, 01 Feb 2021. [Google Scholar] [CrossRef]
- Jaiswal; Shrivastav, S.; Kushwaha, H. R.; Chaturvedi, R.; Singh, R. P. Oncogenic potential of SARS-CoV-2—targeting hallmarks of cancer pathways. In BioMed Central Ltd; 26 Sep 2024. [Google Scholar] [CrossRef]
- Costanzo, M.; De Giglio, M. A. R.; Roviello, G. N. Deciphering the Relationship between SARS-CoV-2 and Cancer. In Multidisciplinary Digital Publishing Institute (MDPI); 01 May 2023. [Google Scholar] [CrossRef]
- Rahimmanesh; Shariati, L.; Dana, N.; Esmaeili, Y.; Vaseghi, G.; Javanmard, S. Haghjooy. Cancer Occurrence as the Upcoming Complications of COVID-19; Frontiers Media S.A, 28 Jan 2022. [Google Scholar] [CrossRef]
- Jahankhani, K.; Ahangari, F.; Adcock, I. M.; Mortaz, E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023, vol. 213, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Miteva, D. G.; Gulinac, M.; Peruhova, M.; Velikova, T. Exploring the oncogenic potential of SARS-CoV-2 in the gastrointestinal tract. World J. Gastroenterol. 2025, vol. 31(no. 31). [Google Scholar] [CrossRef]
- Alpalhão, M.; Ferreira, J. A.; Filipe, P. Persistent SARS-CoV-2 infection and the risk for cancer. Med. Hypotheses 2020, vol. 143. [Google Scholar] [CrossRef]
- Forsyth, C. B. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells. Microorganisms 2022, vol. 10(no. 10). [Google Scholar] [CrossRef] [PubMed]
- Olajide; Iwuanyanwu, V. U.; Adegbola, O. D.; Al-Hindawi, A. A. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. Mol. Neurobiol. 2022, vol. 59(no. 1), 445–458. [Google Scholar] [CrossRef] [PubMed]
- Patra, T. SARS-CoV-2 spike protein promotes IL-6 transsignaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020, vol. 16(no. 12). [Google Scholar] [CrossRef]
- Johnson, E. L. The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling pathway in DC-SIGN-expressing THP-1 cells. Cell Stress Chaperones 2024, vol. 29(no. 2), 227–234. [Google Scholar] [CrossRef]
- Shirato, K.; Kizaki, T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 2021, vol. 7(no. 2). [Google Scholar] [CrossRef]
- Zhu. Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice. Respir. Res. 2025, vol. 26(no. 1). [Google Scholar] [CrossRef] [PubMed]
- Rotoli, B. M.; Barilli, A.; Visigalli, R.; Ferrari, F.; Dall’Asta, V. Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between endothelium and innate immune cells. Biomedicines 2021, vol. 9(no. 9). [Google Scholar] [CrossRef]
- Van Tin, H.; Rethi, L.; Higa, S.; Kao, Y. H.; Chen, Y. J. Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3 Inflammasomes and NF-κB Signaling. Cells 2024, vol. 13(no. 16). [Google Scholar] [CrossRef]
- Nguyen, H. N. T.; Kawahara, M.; Vuong, C. K.; Fukushige, M.; Yamashita, T.; Ohneda, O. SARS-CoV-2 M Protein Facilitates Malignant Transformation of Breast Cancer Cells. Front. Oncol. 2022, vol. 12. [Google Scholar] [CrossRef]
- Nguyen, H. N. T. Extracellular vesicles derived from SARS-CoV-2 M-protein-induced triple negative breast cancer cells promoted the ability of tissue stem cells supporting cancer progression. Front. Oncol. 2024, vol. 14. [Google Scholar] [CrossRef]
- Goel, S. SARS-CoV-2 Switches ‘on’ MAPK and NFκB Signaling via the Reduction of Nuclear DUSP1 and DUSP5 Expression. Front. Pharmacol. 2021, vol. 12. [Google Scholar] [CrossRef]
- Higgins, C. A. SARS-CoV-2 hijacks p38β/MAPK11 to promote virus replication. mBio 2023, vol. 14(no. 4). [Google Scholar] [CrossRef]
- Faist. Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res. 2023, vol. 209, 105475. [Google Scholar] [CrossRef]
- Rapti, V.; Tsaganos, T.; Vathiotis, I. A.; Syrigos, N. K.; Li, P.; Poulakou, G. New Insights into SARS-CoV-2 and Cancer Cross-Talk: Does a Novel Oncogenesis Driver Emerge? 2022, MDPI. [Google Scholar] [CrossRef]
- Schreiber. The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cellular and Molecular Life Sciences 2022, vol. 79(no. 1). [Google Scholar] [CrossRef] [PubMed]
- Engler, M.; Albers, D.; Von Maltitz, P.; Groß, R.; Münch, J.; Cirstea, I. C. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. Life Sci. Alliance 2023, vol. 9. [Google Scholar] [CrossRef] [PubMed]
- Bouhaddou, M. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020, vol. 182(no. 3), 685–712.e19. [Google Scholar] [CrossRef]
- Sharif-Askari, F. Saheb. SARS-CoV-2 attenuates corticosteroid sensitivity by suppressing DUSP1 expression and activating p38 MAPK pathway. Eur. J. Pharmacol. 2021, vol. 908. [Google Scholar] [CrossRef] [PubMed]
- Serwaa. In vitro analysis suggests that SARS-CoV-2 infection differentially modulates cancer-like phenotypes and cytokine expression in colorectal and prostate cancer cells. Sci. Rep. 2024, vol. 14(no. 1). [Google Scholar] [CrossRef]
- Neufeldt, J. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Commun. Biol. 2022, vol. 5(no. 1). [Google Scholar] [CrossRef] [PubMed]
- Grimes, M.; Grimes, K. V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J. Mol. Cell. Cardiol. 2020, vol. 144, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Yilmaz, D.; Yildiz, C. G.; Cacan, E. Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19. Molecular Biology Reports 2025, 2025 52:1, vol. 52(no. 1), 180. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. In John Wiley and Sons Inc; 01 Dec 2021. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, X.; Sun, S. C. NF-κB in inflammation and cancer. In Springer Nature; 01 Aug 2025. [Google Scholar] [CrossRef]
- Wu, Y. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct. Target. Ther. 2021, vol. 6(no. 1). [Google Scholar] [CrossRef]
- Nishitsuji, H.; Iwahori, S.; Ohmori, M.; Shimotohno, K.; Murata, T. Ubiquitination of SARS-CoV-2 NSP6 and ORF7a Facilitates NF-κB Activation. mBio 2022, vol. 13(no. 4). [Google Scholar] [CrossRef]
- Manore, S. G.; Doheny, D. L.; Wong, G. L.; Lo, H. W. IL-6/JAK/STAT3 Signaling in Breast Cancer Metastasis: Biology and Treatment; Frontiers Media S.A, 15 Mar 2022. [Google Scholar] [CrossRef]
- Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers; Frontiers Media S.A, 16 Dec 2022. [Google Scholar] [CrossRef]
- Abooali, M. Wuhan strain of SARS-CoV-2 triggers activation of immune evasion machinery similar to the one operated by cancer cells. Front. Immunol. vol. 16, 2025. [CrossRef]
- Mortezaee; Majidpoor, J. CD8+ T Cells in SARS-CoV-2 Induced Disease and Cancer—Clinical Perspectives; Frontiers Media S.A, 01 Apr 2022. [Google Scholar] [CrossRef]
- Catakovic; Klieser, E.; Neureiter, D.; Geisberger, R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy; BioMed Central Ltd, 05 Jan 2017. [Google Scholar] [CrossRef]
- Sasidharan Nair, V.; Toor, S. M.; Taha, R. Z.; Shaath, H.; Elkord, E. DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer. Clin. Epigenetics 2018, vol. 10(no. 1). [Google Scholar] [CrossRef]
- Lin, X. Regulatory mechanisms of PD-1/PD-L1 in cancers. In BioMed Central Ltd; 01 Dec 2024. [Google Scholar] [CrossRef]
- LATIF, B.; SHUKLA, S.; DEL RIO ESTRADA, P. M.; RIBEIRO, S. P.; SEKALY, R. P.; SHARMA, A. A. Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection; Elsevier Inc, 01 Mar 2022. [Google Scholar] [CrossRef]
- Saleh, R.; Toor, S. M.; Khalaf, S.; Elkord, E. Breast cancer cells and PD-1/PD-L1 blockade upregulate the expression of PD-1, CTLA-4, TIM-3 and LAG-3 immune checkpoints in CD4+ T cells. Vaccines (Basel). 2019, vol. 7(no. 4). [Google Scholar] [CrossRef]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4; BioMed Central Ltd, 06 Nov 2019. [Google Scholar] [CrossRef]
- Borgeaud. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat. Rev. 2023, vol. 120, 102614. [Google Scholar] [CrossRef]
- Dermani, F. K.; Samadi, P.; Rahmani, G.; Kohlan, A. K.; Najafi, R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. 2019, vol. 234(no. 2), 1313–1325. [Google Scholar] [CrossRef] [PubMed]
- Dhatchinamoorthy, K.; Colbert, J. D.; Rock, K. L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021, vol. 12, 636568. [Google Scholar] [CrossRef]
- Lasser, S. A.; Ozbay Kurt, F. G.; Arkhypov, I.; Utikal, J.; Umansky, V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nature Reviews Clinical Oncology 2024, 2024 21:2, vol. 21(no. 2), 147–164. [Google Scholar] [CrossRef]
- Veglia, F.; Sanseviero, E.; Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nature Reviews Immunology 2021, 2021 21:8, vol. 21(no. 8), 485–498. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Y.; Gao, G. F. A Structural Voyage Toward the Landscape of Humoral and Cellular Immune Escapes of SARS-CoV-2. In Immunol. Rev.; WEBSITE:WEBSITE:PERICLES;SUBPAGE; STRING:ACCESS, Mar 2025; vol. 330, no. 1, p. e70000. [Google Scholar] [CrossRef]
- Agerer, B. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci. Immunol. 2021, vol. 6(no. 57), eabg6461. [Google Scholar] [CrossRef]
- Moriyama, M.; Lucas, C.; Monteiro, V. S.; Iwasaki, A. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. In Proc. Natl. Acad. Sci. U. S. A.; ISSUE:ISSUE:DOI, Apr 2023; vol. 120, no. 16, p. e2221652120. [Google Scholar] [CrossRef]
- Demel, U. M. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J. Clin. Invest. 2022, vol. 132(no. 9). [Google Scholar] [CrossRef]
- Law, M. K.; Valdes-Mora, F.; Gallego-Ortega, D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020 2020, Vol. 9, Page 561, vol. 9(no. 3), 561. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Liu, T.; Dai, X.; Bazhin, A. V. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front. Immunol. 2020, vol. 11, 540749. [Google Scholar] [CrossRef] [PubMed]
- Allen, C. N. S. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 2022, vol. 14(no. 5), 983. [Google Scholar] [CrossRef]
- Codo, C. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, vol. 32(no. 3), 437. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, J. W. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol. Res. 2024, vol. 204, 107170. [Google Scholar] [CrossRef]
- Yaneske, E.; Zampieri, G.; Bertoldi, L.; Benvenuto, G.; Angione, C. Genome-scale metabolic modelling of SARS-CoV-2 in cancer cells reveals an increased shift to glycolytic energy production. In FEBS Lett.; SUBPAGE:STRING:FULL, Sep 2021; vol. 595, no. 18, pp. 2350–2365. [Google Scholar] [CrossRef]
- Camps, J.; Iftimie, S.; Jiménez-Franco, A.; Castro, A.; Joven, J. Metabolic Reprogramming in Respiratory Viral Infections: A Focus on SARS-CoV-2, Influenza, and Respiratory Syncytial Virus. Biomolecules 2025, Vol. 15, Page 1027, vol. 15(no. 7), 1027. [Google Scholar] [CrossRef]
- Li, K. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduction and Targeted Therapy 2021, 2021 6:1, vol. 6(no. 1), 362. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, L.; Li, M.; Wang, X. The SARS-CoV-2 host cell receptor ACE2 correlates positively with immunotherapy response and is a potential protective factor for cancer progression. Comput. Struct. Biotechnol. J. 2020, vol. 18, 2438–2444. [Google Scholar] [CrossRef]
- Cheng, M. T. K. Determinants of SARS-CoV-2 outcomes in patients with cancer vs controls without cancer: a multivariable meta-analysis with genomic imputation. EClinicalMedicine 2025, vol. 83, 103194. [Google Scholar] [CrossRef] [PubMed]
- Parise, R. Health influence of SARS-CoV-2 (COVID-19) on cancer: a review. Acta Biochim. Biophys. Sin. (Shanghai). 2022, vol. 54(no. 10), 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Montopoli, M. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Annals of Oncology 2020, vol. 31(no. 8), 1040. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, D. Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Commun. Biol. 2020, vol. 3(no. 1), 374. [Google Scholar] [CrossRef]
- Hirano, T.; Murakami, M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity 2020, vol. 52(no. 5), 731–733. [Google Scholar] [CrossRef]
- Onabajo. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat. Genet. 2020, vol. 52(no. 12), 1283. [Google Scholar] [CrossRef]
- Xiong; Sun, Q. How does SARS-CoV-2 infection impact on immunity, procession and treatment of pan cancers. J. Med. Virol. 2023, vol. 95(no. 2), e28487. [Google Scholar] [CrossRef]
- Chia, S. B. Respiratory viral infections awaken metastatic breast cancer cells in lungs. Nature 2025, 2025 645:8080, vol. 645(no. 8080), 496–506. [Google Scholar] [CrossRef]
- Addeo. Immunogenicity of SARS-CoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell 2021, vol. 39(no. 8), 1091–1098.e2. [Google Scholar] [CrossRef]
- Kakkassery, H.; Carpenter, E.; Patten, P. E. M.; Irshad, S. Immunogenicity of SARS-CoV-2 vaccines in patients with cancer. Trends Mol. Med. 2022, vol. 28(no. 12), 1082–1099. [Google Scholar] [CrossRef]
- Li, Y. Impact of SARS-CoV-2 infection on clinical characteristics, antibody levels, and immune responses in patients with malignant hematological tumors. Journal of Chemotherapy 2025. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Guo, Y.; Ai, C.; Wang, X.; Li, G. The double-edged sword: How SARS-CoV-2 might fuel lung cancer: Investigating the potential oncogenic mechanisms of the novel coronavirus in lung carcinogenesis. Mol. Aspects Med. 2025, vol. 106, 101413. [Google Scholar] [CrossRef]
- Stingi; Cirillo, L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. BioEssays 2021, vol. 43(no. 8). [Google Scholar] [CrossRef]
- Wagner. SARS-CoV-2-mRNA Booster Vaccination Reverses Non-Responsiveness and Early Antibody Waning in Immunocompromised Patients – A Phase Four Study Comparing Immune Responses in Patients With Solid Cancers, Multiple Myeloma and Inflammatory Bowel Disease. Front. Immunol. 2022, vol. 13. [Google Scholar] [CrossRef]
- Obermannova, R. L. Patterns of SARS-CoV-2-specific humoral and cellular immune response in actively treated patients with solid cancer following prime BNT162b2 COVID-19 vaccination: results from phase IV CoVigi trial. Ther. Adv. Med. Oncol. 2025, vol. 17. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Gaitan. Immunogenicity and risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection after Coronavirus Disease 2019 (COVID-19) vaccination in patients with cancer: a systematic review and meta-analysis. Eur. J. Cancer 2022, vol. 160, 243–260. [Google Scholar] [CrossRef]
- Martins-Branco, D. Immune response to anti-SARS-CoV-2 prime-vaccination in patients with cancer: a systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2022, vol. 149(no. 7), 3075. [Google Scholar] [CrossRef] [PubMed]
- Mair, M. J. Third dose of SARS-CoV-2 vaccination in hemato-oncological patients and health care workers: immune responses and adverse events – a retrospective cohort study. Eur. J. Cancer 2022, vol. 165, 184–194. [Google Scholar] [CrossRef]
- Grippin, J. SARS-CoV-2 mRNA vaccines sensitize tumours to immune checkpoint blockade. Nature 2025, 2025 647:8089, vol. 647(no. 8089), 488–497. [Google Scholar] [CrossRef]
- Bertoletti; Le Bert, N.; Qui, M.; Tan, A. T. SARS-CoV-2-specific T cells in infection and vaccination. In Springer Nature; 01 Oct 2021. [Google Scholar] [CrossRef]
- Tarke. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2021, vol. 2(no. 7), 100355. [Google Scholar] [CrossRef]
- Woldemeskel; Garliss, C. C.; Blankson, J. N. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J. Clin. Invest. 2021, vol. 131(no. 10), e149335. [Google Scholar] [CrossRef]
- Gonzalez-Carmona, M. A. Longitudinal Study of SARS-CoV-2 Vaccinations and Infections in Patients with Gastrointestinal Cancer: Stabilizing Immune Responses and Neutralizing Emerging Variants with Variant-Adapted Antigen Exposures †. Int. J. Mol. Sci. 2024, vol. 25(no. 24). [Google Scholar] [CrossRef] [PubMed]
- Sisteré-Oró, M. Brief Research Report: Anti-SARS-CoV-2 Immunity in Long Lasting Responders to Cancer Immunotherapy Through mRNA-Based COVID-19 Vaccination. Front. Immunol. 2022, vol. 13, 908108. [Google Scholar] [CrossRef]
- Isidoro. SARS-CoV2 and Anti-COVID-19 mRNA Vaccines: Is There a Plausible Mechanistic Link with Cancer? Cancers 2025, Vol. 17, Page 3867, vol. 17(no. 23), 3867. [Google Scholar] [CrossRef] [PubMed]
- Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M. S. COVID-19 and Cancer: a Comprehensive Review. Curr. Oncol. Rep. 2020, vol. 22(no. 5), 53. [Google Scholar] [CrossRef]
- Albiges, L. Determinants of the outcomes of patients with cancer infected with SARS-CoV-2: results from the Gustave Roussy cohort. Nature Cancer 2020, 2020 1:10, vol. 1(no. 10), 965–975. [Google Scholar] [CrossRef] [PubMed]
- Garciá-Suárez, J. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: lessons from a large population-based registry study. Journal of Hematology & Oncology 2020, 2020 13:1, vol. 13(no. 1), 133. [Google Scholar] [CrossRef]
- Cai, G. Immunological alternation in COVID-19 patients with cancer and its implications on mortality. In Oncoimmunology; STRING:PUBLICATION: WGROUP, Jan 2021; vol. 10, no. 1. [Google Scholar] [CrossRef]
- Dettorre, G. M. Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score. J. Immunother. Cancer 2021, vol. 9(no. 3), 2277. [Google Scholar] [CrossRef]
- Oppolzer. Impact of SARS-CoV-2 Pandemic on Diagnosis of Prostate Cancer. Urol. Int. 2025, vol. 109(no. 2), 158–166. [Google Scholar] [CrossRef]
- Saini, G.; Aneja, R. Cancer as a prospective sequela of long COVID-19. Bioessays 2021, vol. 43(no. 6), 2000331. [Google Scholar] [CrossRef]
- Li, Y. S.; Ren, H. C.; Cao, J. H. Correlation of SARS-CoV-2 to cancer: Carcinogenic or anticancer? (Review). Int. J. Oncol. 2022, vol. 60(no. 4), 42. [Google Scholar] [CrossRef]
- Moujaess; Kourie, H. R.; Ghosn, M. Cancer patients and research during COVID-19 pandemic: A systematic review of current evidence. Crit. Rev. Oncol. Hematol. 2020, vol. 150, 102972. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).