Preprint
Review

This version is not peer-reviewed.

MiT/TFE (TFEB/TFE3) Pathways in Pulmonary Diseases: Current Evidence and Emerging Mechanisms

Submitted:

02 February 2026

Posted:

03 February 2026

You are already at the latest version

Abstract
The MiT/TFE family transcription factors play a critical role in regulating lysosomal biogenesis, autophagy, mitochondrial turnover and lipid catabolism by regulating the CLEAR gene network. The dysregulation of MiT/TFE activity has been implicated in the onset and progression of cancer and neurodegeneration but its functions in asso-ciation with pulmonary diseases remain poorly understood. Thus, elucidating the role of MiT/TFE proteins in cellular homeostasis in the lung is crucial for understanding the origin and progression of pulmonary diseases such as inflammation, disrupted repair mechanisms, and fibrosis. In this review we systematically summarize the findings from human pulmonary diseases and associated genetic disorders, such as asthma, cancer, Birt-Hogg-Dube (BHD) syndrome, and lung injury models that implicate MiT/TFE dysregulation in pathogenic progression. We also discussed MiT/TFE regula-tion and signaling through pathways involving mTORC1, AMPK, and lysosomal stress in different cellular contexts. Finally, we discussed significant mechanistic gaps, such as the absence of in vivo models targeting the combined activity of TFEB and TFE3 in disease progression and prevention. In conclusion, these insights seek to offer a com-prehensive framework for understanding MiT/TFE signaling in human lung diseases and could present a promising opportunity for directing future mechanistic and translational research.
Keywords: 
;  ;  ;  ;  ;  ;  ;  

1. Introduction

The microphthalmia/transcription factor E (MiT/TFE) family comprises a small group of evolutionarily conserved transcription factors that play central roles in cellular adaptation to metabolic and environmental stress [1,2]. Members of this family belong to the basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily of transcription factors, which includes regulators such as MYC, MAX, SREBP, USF, MLX, and AP4 [3,4,5,6]. In vertebrates, the MiT/TFE family consists of four closely related proteins: microphthalmia-associated transcription factor (MITF), transcription factor EB (TFEB), TFE3, and TFEC. These proteins form homo- or heterodimers via their leucine zipper domains and bind DNA through a conserved basic region that recognizes E-box motifs (CANNTG) and/or M-box motif (CATGTG) and modified E-box motif containing CLEAR (Coordinated Lysosomal Expression And Regulation) element, a palindromic 10-base-pair motif (GTCACGTGAC) within downstream target gene promoters [7,8,9].
TFEB was first identified as a transcriptional regulator of the CLEAR network, a discovery that established MiT/TFE proteins as master regulators of lysosomal biogenesis and autophagy[10]. Subsequent studies demonstrated that TFE3 and MITF can also bind CLEAR elements, highlighting functional redundancy and cooperation among family members [1,11,12,13]. These transcription factors coordinate a broad transcriptional program that extends beyond lysosomal gene expression to genes involved in autophagy initiation, autophagosome formation and trafficking, lysosome-autophagosome fusion, extracellular vesicle trafficking and selective degradation pathways such as mitophagy [11,12,14,15,16,17]. Through these functions, MiT/TFE proteins promote cellular catabolic and recycling processes, thereby supporting metabolic homeostasis under nutrient deprivation, organelle damage, and other stress conditions. In addition to this, MiT/TFE factors have also been implicated in nutrient sensing, energy metabolism, mitochondrial biogenesis, oxidative and endoplasmic reticulum stress responses, innate immunity and inflammation, cell fate determination, aging, and tissue-specific differentiation programs [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].
At the molecular level, MiT/TFE proteins activity is tightly regulated by post-translational modifications, most prominently phosphorylation, which integrates upstream signals from nutrient-, stress- and growth factors- sensing pathways. Under nutrient- replete condition, the mechanistic target of rapamycin complex 1 (mTORC1) act as a central negative regulator of TFEB and TFE3 by phosphorylating conserved serine residues that promote 14-3-3 mediated cytoplasmic retention [35,36,37]. Conversely, nutrient starvation, lysosomal dysregulation, mitochondrial dysfunction, or calcium signaling induces MiT/TFE dephosphorylation, nuclear translocation, and transcriptional activation of downstream transcriptional program. Other post-translational modifications include ubiquitination, acetylation, SUMOylation, and dephosphorylation that also implicate in the fine tuning of MiT/TFE stability and activity as mTORC1-independent mechanisms in a tissue- and context-dependent manner.
Dysregulation of MiT/TFE signaling is associated with a wide spectrum of human diseases. Aberrant activation of TFEB and TFE3 contributes to tumorigenesis, neurodegenerative disorders and lysosomal storage diseases. Owing to their central role in coordinating lysosomal and autophagic pathways, MiT/TFE transcription factors have emerged as attractive therapeutic targets. Here, we review the emerging role of MiT/TFE proteins in pulmonary disease and summarize recent progress in defining the mechanisms that regulate their activity in the lung.

2. Regulation of MiTF/TFE Transcription Factors

2.1. MITF

The microphthalmia-associated transcription factor (MITF) is a highly conserved transcription factor that plays a critical role in melanocyte development, differentiation, and survival, as well as in melanoma pathology. MITF gene is located on chromosome 3 (approximately 230,000 bp) in human and chromosome 6 ( approximately 215,000 bp) in mouse, respectively [38]. Multiple protein isoforms of MITF with different N-terminal regions are generated by using alternative promoters and splicing, allowing tissue specific regulation [39,40]. For example, In melanocytes, MITF-A [41], and MITF-M [42,43] are key isoforms associated with distinct biological functions ranging from melanocyte differentiation to the survival and invasion of melanoma cells [44]. MITF expression and activity are regulated at transcriptional, post-transcriptional, and post-translational levels. At the transcriptional level, MITF is primarily regulated by transcription factors such as SOX10, PAX3, ATF4, GLI2 and BRN2 (POU3F2), which either activate or repress MITF expression depending on the tissue- or cellular- context. For example, PAX3 and SOX10 enhances MITF transcription, linking it to melanocyte viability [45,46,47], while BRN2 and GLI2 represses MITF in specific melanoma subpopulations [48,49]. MITF promoter contains multiple cis-acting elements and cAMP-responsive elements (CREs) where various signaling pathways including Wnt/β-catenin, BRAF/MAPK/ERK, PI3K/AKT/mTOR, Notch, cAMP/PKA Pathway and TGF-β signaling converge to modulate its expression and activity [37,50,51,52,53]. Post-translational modifications, such as phosphorylation [39] , SUMOylation [54,55] and acetylation [56], affect MITF driven transcriptional programs, MITF stability, and target selectivity [44].

2.2. TFEB

TFEB is the most extensively studied and best characterized member of the MiT/TFE family, due to its central role in coordinating autophagy and lysosomal biogenesis and ubiquitous expression pattern. The human TFEB locus spans approximately 51,000 bp on chromosome 6, whereas mouse Tfeb is located on chromosome 17, and extends over 55,000 bp [57]. TFEB is expressed as multiple alternatively spliced transcript isoforms, such as TFEB-A, TFEB-B, TFEB-C, TFEB-D, TFEB-E, TFEB-F, and TFEB-G, have distinct tissue distribution profile [58]. Several transcription factors such as XBP1, PGC-1α, PPARα, and MYC regulate TFEB expression and regulate its downstream pathways. XBP1, PGC-1α and PPARα activates TFEB expression by directly binding to TFEB promoter [59,60,61] whereas MYC acts as a repressor by directly binding on MYC response elements on TFEB promoter [62,63]. TFEB activity is also regulated through a self-regulatory positive feedback mechanism under nutrient starvation where TFEB binds to CLEAR elements of PGC-1α and PPARα, in response inducing TFEB expression [64].
TFEB activity is strictly regulated by its nucleocytoplasmic localization, controlled by nutrient-sensing signaling at the lysosomal surface and post-translational modifications. TFEB has more than 20 phosphorylation sites, including multiple residues phosphorylated by mTORC1, act as major regulator of TFEB. However, this control is not uniform across systems and appears complex and context dependent. Under nutrient-replete conditions, mTORC1 phosphorylates TFEB at S211 and also at S142 [65,66]. Phosphorylation at Ser211 promotes TFEB binding to 14-3-3 proteins, which retain TFEB in the cytoplasm [66,67]. Under nutrient limiting condition or impaired lysosomal function, TFEB gets dephosphorylated, disengages from 14-3-3, and translocate to the nucleus. Nuclear TFEB activates CLEAR target genes to restore lysosomal homeostasis and cellular clearance capacity [66,67,68,69]. Studies also suggest that loss of phosphorylation only at S211 is not sufficient to drive TFEB import into the nucleus, as S211A TFEB mutant remains responsive to mTORC1 [70]. Celis et al identified S122 as a direct mTOR phosphorylation site, and a phosphomimetic S122 substitution largely attenuates the response of TFEB to MTORC1 inhibition [70]. Together, these findings support a multistep model in which MTORC1 regulates TFEB through coordinated phosphorylation at multiple sites, rather than through S211 alone.
Growth factors, mitogens, nutrients (such as amino acids), and stress signals integrate at the lysosomal surface, and this integration tightly regulates mTORC1-TFEB rheostat. RTK signaling (such as insulin or IGF) activates the PI3K–AKT pathway [71,72,73,74], and mitogens activate the RAS–RAF–MEK–ERK pathway [75,76]. Both signaling pathways converge at the TSC1–TSC2–TBC1D7 complex upstream to mTORC1, ultimately releases TSC-mediated inhibition of Rheb [77,78]. This reduction allows Rheb-GTP to directly activate mTORC1 [79,80]. Concurrently, amino acids regulate mTORC1 by influencing their recruitment to lysosomes through RagA/B-RagC/D GTPases and the Ragulator-v-ATPase platform [81,82,83]. This process is further modulated by GATOR1/GATOR2 and nutrient sensors like Sestrins for leucine, CASTOR for arginine, and SAMTOR for methionine/S-adenosylmethionine, along with lysosomal amino acid transport and sensing components such as SLC38A9 [84,85,86,87,88,89]. Glucose and energy sensor AMPK promote TFEB pathway activation through upstream remodeling of the Rag–mTORC1 via AMPK-mediated phosphorylation of FNIP1 suppresses FLCN–FNIP function [90]. Starvation and lysosomal stress also release lysosomal Ca²⁺ via MCOLN1/TRPML1 and activates calcineurin that dephosphorylates TFEB [91,92]. Because TFEB is a critical substrate associated with lysosomes downstream to mTORC1, the combined effects of Rheb-driven activation and Rag-mediated lysosomal positioning determine TFEB’s phosphorylation and 14-3-3 binding. This, in turn, dictates whether TFEB remains in the cytosol or enters the nucleus to activate CLEAR genes involved in lysosomal function and autophagy.

2.3. TFE3

TFE3, or transcription factor E3 (Transcription Factor binding to IGHM Enhancer 3) is another MiT/TFE family transcription factor that shares significant similarities with TFEB in terms of protein structure and function. TFE3 is expressed ubiquitously with highest expression pattern in placenta, lung, and adrenal gland [58]. The TFE3 gene is located on the short arm of the X-chromosome in both mouse and human (Xp11.2) [93]. Through the use of alternative transcription start sites, TFE3 is expressed as two main isoforms, a long and a short form [93,94]. Both isoforms utilize the same Rags/mTORC1-dependent regulatory mechanism and have a similar ability to trigger the expression of lysosomal and autophagic genes when activated. However, the short isoform is missing the N-terminal 105 amino acid residues, which include a phosphorylation-ubiquitin ligase recognition site that targets it for degradation by the proteasome, known as a phosphodegron. As a result, this short isoform is consistently expressed at high levels in most cells [94].
TFE3 and TFEB share several overlapping functions. TFE3 and TFEB are partially redundant in certain functions such as inducing lysosomal biogenesis [95] and controlling CD40 ligand expression [96]. Additionally, both factors play a role in helping cells cope with stress in the endoplasmic reticulum (ER) by promoting the expression of ATF4 and other genes involved in the unfolded protein response (UPR) [27,97,98]. However, if ER stress persists, the activation of TFEB and TFE3 may lead to cell death. This occurs either by directly triggering pro-apoptotic genes like CHOP and PUMA or indirectly by increasing ATF4 levels, which can subsequently induce CHOP and PUMA expression. Collectively, these findings indicate that the TFEB/TFE3–ATF4 signaling pathway can either support cell survival or lead to apoptosis, depending upon the stress intensity and duration. MiT/TFE factors (including TFEB/TFE3) have also been linked to selective autophagy programs such as ER-phagy, where TFEB/TFE3 can induce the ER-phagy receptor FAM134B during prolonged starvation [99]. However, they also have their unique functions. For example, global deletion of Tfeb results in early embryonic lethal in mice due to placental defects whereas Tfe3 knockout has no abnormal phenotypes under physiological conditions. In addition to the common target gene set, they may also have their unique target genes in different cellular context [100].

2.4. TFEC

TFEC is the only member in the family that lacks the transactivation domain. The human TFEC gene maps to chromosome 7q31.2, while the mouse Tfec gene is on chromosome 6. TFEC has 3 isoforms, TFEC-A, TFEC-B and TFEC-C. TFEC-A and TFEC-B are generated by alternative transcription start sites. Using 5′-RACE in human kidney cDNA, a third transcript (TFEC-C) was identified that starts from a distinct 5′ exon (exon 1c) located between exons 3 and 4. TFEC have restricted, tissue-specific expression, with each variant displaying a distinct distribution pattern across organs. For example, TFEC-A is enriched in testis, thymus, trachea, colon, and prostate, TFEC-B is more broadly expressed (largely absent from heart and liver), and TFEC-C is restricted to kidney and small intestine [58].
TFEC has been reported to heterodimerize with TFE3 and antagonizes TFE3-driven transactivation and transcriptional programs [101]. TFEC is expressed strongly and selectively in macrophages [102], and TFEC-knockout mice develop normally without obvious abnormalities [103]. Rehli et al have further shown IL-4 dependent TFEC expression through STAT6 in macrophages, and loss of TFEC reduces a small set of IL-4–responsive genes, including Csf3r (the G-CSF receptor) [103]. Another study using OVA-induced allergic asthma mice model showed that IL-4 induced TFEC can bind the IL-4Rα promoter and boost IL-4Rα expression, creating an IL-4–TFEC–IL-4Rα positive feedback loop that supports M2 macrophage polarization [104,105]. Altogether, TFEC and its associated functions remain poorly characterized. Therefore, additional studies are needed to define TFEC’s roles across different human tissues and cell types.

3. Role in Human Pulmonary Diseases

MiT/TFE transcription factors (TFEB, TFE3, MITF, and TFEC) have been studied mainly in neurodegeneration, cancer, and immune regulation, where MiT/TFE proteins control lysosome–autophagy programs, cellular metabolism, and innate immune gene responses. In contrast, their roles in pulmonary biology and lung diseases remain less defined. Most lung-focused work to date has centered on lung cancer and asthma/allergic airway inflammation, where TFEB-linked lysosomal programs and TFEB regulation in airway/immune compartments have been implicated in disease mechanisms. Together, these emerging findings highlight a growing need to systematically investigate MiT/TFE signaling across a wider range of pulmonary diseases.

3.1. Lung Tumors and Cancer Progression

The role of MITF in lung tumor and cancer progression vary depending on the types of cancer cells studied. In lung adenocarcinoma-derived A549 cells, an increase in MITF activity has been associated with resistance to cisplatin (DDP) chemotherapy, as well as enhanced lysosomal biogenesis and autophagy. This indicates a stress-tolerance mechanism that may mitigate the effects of cytotoxic treatments [106]. Hsiao et al have demonstrated higher expression of MITF in low-invasive CL1-0 lung adenocarcinoma cells. Both xenograft mouse model and in vitro studies showed MITF knockdown enhances metastasis and tumorigenesis [107]. Whole-transcriptome analyses and ChIP assays in lung adenocarcinoma suggest that MITF directly binds to promoter of FZD7, PTGR1, and ANXA1 and act as transcriptional repressor to attenuates cell cycle progression, invasion and WNT signaling [107].
Elevated levels of TFEB are linked to poor prognosis in non-small cell lung cancer (NSCLC) through its role in autophagy-lysosome pathway (ALP) that enhances tumor cell survival and migration, and confers resistance to therapeutic interventions [108,109]. In vitro studies using human lung cancer cells (393P) showed knockdown of TFEB entirely and significantly reversed overexpression of CLEAR genes and Cathepsin D activity caused by the induction of TMEM106B, a lysosomal transmembrane protein as a critical driver of lung cancer metastasis [110]. A recent study examining lung adenocarcinoma cohorts has identified TFEB as a key factor influencing therapy sensitivity, rather than serving as a consistent pro-resistance lysosomal driver. Elevated levels of TFEB were correlated with improved patient survival rates and a transporter profile (high ABCA1 and low ABCC1 expression) that increase sensitivity to chemotherapy drug cisplatin [111]. In contrast, loss of TFEB led to increased ABCC1-dependent drug efflux and maintenance of mitochondrial ATP/OXPHOS under stress and therefore promotes resistance to platinum-based therapies. Additionally, TFEB was found to support a SREBP2-cholesterol/isoprenoid (IPP) pathway, which enhanced the activation and immune-killing capabilities of Vγ9Vδ2 T-cells through ABCA1-associated metabolite efflux [111]. Thus, in NSCLC, TFEB level seems to affect sensitivity of cancer cells to treatment. When TFEB levels are low, there is a decreased response to chemotherapy and immune system attacks. A specific transcriptional signature, marked by low TFEB, low ABCA1, and high ABCC1, has been suggested as an indicator of poor outcomes to both chemotherapy and immunotherapy. To counteract this resistance in tumors with low TFEB, it might be possible to restore their vulnerability by targeting the pathways regulated by TFEB.
TFE3 can directly promote pro-proliferative programs by binding the hTERT promoter to support telomerase expression and cell-cycle progression [112]. Simultaneously, TFE3 gene fusions characterize rare yet significant subsets of pulmonary tumors where TFE3 is under abnormal regulatory control or form chimeric transcriptional proteins. The YAP1-TFE3 fusion is notably recurrent in clear cell stromal tumor of the lung (CCST-L) [113], Perivascular epithelioid cell tumor (PEComas) [114] and pulmonary epithelioid hemangioendothelioma [115] as evidenced by numerous studies and case reports, establishing it as a molecularly distinct entity. Additionally, TFE3 rearrangements appear in exceedingly rare conditions such as pulmonary alveolar soft part sarcoma [116], where molecular confirmation of the ASPSCR1-TFE3 fusion and TFE3 by immunohistochemistry and fluorescence in situ hybridization (IHC/FISH) prove diagnostically valuable. Within epithelioid hemangioendothelioma (EHE), cases positive for YAP1-TFE3 fusions have been identified as a distinct molecular subset. Moreover, the spectrum of these fusions is expanding with the discovery of non-canonical TFE3 fusions, such as RREB1-TFE3 [117]. Therapeutic treatment of D-mannose enhanced TFE3-driven lysosomal biogenesis, accelerating wild type EGFR and mutant EGFR (E746-A750 deletion, L858R and T790M mutations) degradation in lysosomes and suppressing NSCLC progression in vitro and in xenograft tumor mouse model [118].

3.2. Asthma

In asthma or allergic airway inflammation, the lysosomal-autophagic machinery could act either as a protective mechanism or a harmful one, depending upon the specific cell type, the trigger involved, and the stage of the disease. TFEB is emerging as important regulator of stress responses in asthma. Using severe asthma mouse model by intranasal administration of house dust mite (HDM)/c-di-GMP, elevated TFEB activity, achieved by pre-treatment with dexamethasone or trehalose intraperitoneally, dampen NLRP3-dependent inflammatory responses in monocytes and improve disease features [119]. A recent study showed reduced TFEB and other lysosomal gene expressions in airway epithelial cells of ovalbumin induced and HDM-induced asthma mouse models. It also showed that the expression of inflammatory cytokines (nlrp3, IL-1β, and tslp) was enhanced. Further, microscopy imaging from tissue sections of OVA treated mice demonstrated SUMO1 expression in airway epithelial cells and in vitro co-immunoprecipitation experiment supported the increased TFEB SUMOylation upon ovalbumin treatment in BEAS-2B cells. Thus, TFEB SUMOylation inhibits lysosomal biogenesis and promotes asthma development in airway epithelial cells [120]. TFEB have also been reported to influence adaptive immunity by regulating dendritic-cell antigen presentation, including effects on MHC II and co-stimulatory molecules, with downstream consequences for immune balance [121]. Another study using OVA- and papain- induced asthma model demonstrated increased TFEB-mediated autophagy with higher ATG5 and LC3 II expressions. Neuropeptide S/NPS receptor expression was found to be high in asthma mouse model. Further, in vitro studies showed NPS/NPSR expression induces TFEB expression activity in airway epithelial cells. Thus, NPS/NPSR signaling has been shown to aggravate asthma via a TFEB-dependent autophagy pathway in bronchial epithelial cells, highlighting stimulus- and context-specific outcomes [122].

3.3. COPD/Emphysema

Limited studies have been performed to examine the roles of MiTF/TFE family transcription factors in COPD/emphysema. In longitudinal lung tissue sections from patients with COPD-emphysema, nuclear localization of TFEB decreases with severity of the disease while perinuclear localization of TFEB increases in samples with severe emphysema compared to non-emphysema and mild emphysema [123]. Increased perinuclear TFEB was also observed in smokers compared to non-smokers. Interestingly, cigarette smoke-induced emphysema-like lung histopathology and the associated autophagy impairment, inflammation, and apoptosis in mice can be rescued by gemfibrozil-mediated TFEB induction. Separate studies also show that TFEB alteration may mediate cigarette smoke-induced lung emphysematous pathology by a variety of mechanisms including increased TFEB oxidation and nuclear localization, TFEB expression [124], and autophagy impairment [125].

3.4. Interstitial Lung Diseases

3.4.1. Birt–Hogg–Dubé (BHD) Syndrome

BHD syndrome is an autosomal-dominant disease characterized by facial fibrofolliculomas, renal tumor, and cystic lung disease. Up to 90% of individuals with BHD develop pulmonary cysts, with pneumothorax occurring in ~30% [126,127]. Mechanistically, under nutrient starvation, the FLCN-FNIP complex functions as a GTPase-activating protein, leading to the inactivation of RagC/D. A major advance came from the demonstration of a substrate-selective mTORC1 pathway in which TFEB phosphorylation depends strongly on RagC/D–mediated amino-acid signaling explaining how FLCN loss can preferentially dysregulate TFEB control and drive disease phenotypes [4]. In vivo studies showed that constitutive TFEB activation is a key driver of the kidney cyst/cancer-like phenotype in BHD mou[126,127se models and that TFEB depletion rescues the renal disease features, positioning TFEB as a central effector downstream of FLCN–Rag–mTORC1 signaling in BHD [16]. Upon FLCN inactivation, TFE3 becomes dephosphorylated shuttles to nucleus and activates its downstream signaling relevant to tumorigenesis [128]. While pulmonary cyst formation in BHD remains an active area of investigation, current models emphasize that FLCN loss disrupts mesenchymal homeostasis and mechanobiology in the lung [129]. In vitro studies using human fetal lung fibroblasts (MRC-5) demonstrate FLCN inactivation with ~ 100-fold decrease in Wnt2 expression and a 33-fold decrease in Wnt7b expression, indicating that abnormalities in the WNT pathway’s developmental signals. Upon silencing the transcription factor TFE3 in FLCN deficient cells completely reversed this phenotype. Thus, FLCN via TFE3 might play a role in the development of pulmonary cysts associated with BHD [130].

3.4.2. Lymphangioleiomyomatosis (LAM)

LAM is a rare cystic lung disorder characterized by the infiltration of the lung by abnormal, smooth-muscle–like LAM cells, associated with a gradual disruption of the tissue architecture. LAM occurs in two forms, sporadic LAM (S-LAM) [131] [132] and tuberous sclerosis complex-associated LAM (TSC-LAM) also known as familial LAM (F-LAM) [133,134]. In S-LAM, LAM cells or niche cells usually harbor somatic mutations in the TSC2 gene, whereas in F-LAM, the underlying issue involves germline disruptions in TSC1 or TSC2 genes [135]. LAM predominantly affects women due to risk factors associated with elevated estrogen levels, such as during pregnancy or with external estrogen exposure [136,137,138]. The critical involvement of the mTOR pathway in LAM is highlighted by findings that sirolimus (an mTORC1 inhibitor) can help stabilize lung function and enhance clinical outcomes during treatment [139,140,141]. Currently there is no direct evidence reporting MITF/TFE protein involvement in LAM progression. Paradoxically, despite high mTORC1 in LAM cells, TFEB is often nuclear and active. TFEB also promotes mTORC1 activation via Rag GTPases, creating a feedback loop for mTORC1 activation [142]. Recent single cell RNAseq [143] and spatial transcriptomics studies [144,145,146] using LAMS patient samples also showed GPNMB, PMEL, and CTSK as differentially expressed genes in LAM core niche cells. Thus, investigating MITF/TFE proteins role in LAM could provide insights into how dysregulation of mTORC1 and TFEB/TFE3 alters lysosome-autophagy pathways and metabolic processes in LAM cells, and associated niche cells.

3.4.3. Pulmonary Lysosomal Storage Diseases (LSDs)

Pulmonary lysosomal storage diseases (LSDs) are a group of inherited disorders characterized by the accumulation of lysosomal substrates in lung cells due to lysosomal dysfunction [147,148]. This accumulation can lead to patterns such as interstitial lung disease (ILD) and the “storage” phenotypes of alveolar macrophages, with Gaucher disease and Niemann–Pick diseases serving as classic examples [149]. In these disorders, lung involvement may manifest as ILD features observable through imaging, necessitating clinical awareness as part of the disease spectrum [149,150,151]. Mechanistically, TFEB and TFE3 play a crucial role, as TFEB acts as the primary transcriptional regulator of a coordinated lysosomal gene network, known as CLEAR, and becomes activated (translocating to the nucleus) in response to lysosomal stress or storage conditions. In LSD models, enhancing TFEB activity by treating with sulforaphane, a small molecule TFEB agonist promotes lysosomal exocytosis and facilitates cellular clearance, thereby ameliorating storage phenotypes both in vitro and in vivo, which supports the role of TFEB as a functional “lysosomal capacity” switch [152]. Additionally, TFEB and TFE3 influence innate immune cells by promoting lysosomal biogenesis and autophagy, thereby shaping inflammatory responses—an important consideration for pulmonary LSDs, where alveolar macrophages are key drivers of storage and inflammation. Collectively, these studies suggest that profiling and functionally testing TFEB/TFE3 pathways in lung macrophages and epithelial cells from pulmonary LSD patients could elucidate disease variability and aid in developing therapeutic strategies.

3.5. Acute Lung Injury and Fibrosis

In acute lung injury (ALI) and fibrotic remodeling, mainly TFEB and TFE3, act as stress-response regulators that adjust autophagy/lysosome function, inflammation, and cellular metabolism. Increasing TFEB activity is protective against injury as demonstrated in LPS induced ALI mouse models and in vitro experiments. For example, TFEB overexpression reduced inflammation and mitochondrial damage by boosting mitophagy [153]. In silica-induced lung injury mouse model, where alveolar macrophages develop lysosomal stress and impaired autophagy flux, trehalose induced TFEB activity improves lysosomal function and autophagy flux and thus reduces fibrotic progression [154]. Another study using mouse model of elastase- and cigarette smoke-induced emphysema (PiZ model) showed that increased TFEB activity via lung-directed TFEB gene transfer and treatment with autophagy enhancer drug (FLU and CBZ) significantly reduced lung collagen deposition and leukocyte infiltration in mice [155] [156]. Thus, TFEB can be protective by restoring cellular clearance and organelle quality control, but their impact on fibrosis and remodeling can vary depending on tissue and cellular context and yet to be studied. In mechanically stiff environments, TFE3 displays enhanced nuclear localization and transcriptional activity, potentially through altered phosphorylation dynamics and interactions with mechanosensitive signaling pathways [157]. This mechano-regulation positions TFE3 as a transcriptional responder not only to metabolic and lysosomal cues but also to physical properties of the cellular microenvironment.

4. Discussion and Conclusions

MiT/TFE transcription factors act as central regulators of cellular homeostasis by coordinating lysosome biogenesis and autophagy. They are mainly considered as nutrient responsive on/ and off switches but emerging regulatory mechanisms that control their stability, subcellular localization, and transcriptional activity. For example, TFEB has been also shown to be involved in ferritinophagy-mediated iron metabolism and contributing to ferroptosis in injured hepatocytes [158]. TFEB is also able to interact with acetyl-CoA synthetase 2 to locally produce acetyl-CoA for histone H3 acetylation in the TFEB-binding promoter region [158]. This epigenetic modification further promotes its activity in lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. This review summarized the findings from the pulmonary diseases where MiT/TFE factors continue to emerge as critical drivers in pulmonary disorders including acute lung injury, chronic inflammatory airway disease, pulmonary vascular remodeling, and fibrotic interstitial lung disease. Therefore, more mechanisms and functional roles of MiTF/TFE in pulmonary physiology and diseases remain to be explored. Recent single cell RNA seq, spatial transcriptomics, and proteomics studies have demonstrated mTORC1 hyperactivation and/or higher expression of CLEAR genes (GPNMB, CTSK, PMEL) in LAMS, sarcoidosis and other ILD diseases also suggests the dysregulation of MITF/TFE activity which could have implications in disease progression.
MiT/TFE proteins driven differential transcriptional activity could mainly be due to different post translational modifications (PTMs) in different cellular context (not discussed) can be found in previously published studies [37,159] . Thus, future work should prioritize cell-type–resolved and time-controlled interrogation of MiT/TFE biology in lung disease models by combining inducible, lineage-traced gain- and loss-of-function models for TFE3 and TFEB across key cell compartments (airway epithelium, alveolar macrophages, endothelium, and fibroblast lineages).

Author Contributions

All three authors, P.S., E.K.A., and W.S participated in the drafting of the manuscript.

Funding

NHLBI R01HL146541 and The Ann Theodore Foundation Breakthrough Sarcoidosis Initiative.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. La Spina, M.; Contreras, P. S.; Rissone, A.; Meena, N. K.; Jeong, E.; Martina, J. A. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2020, 8, 609683. [Google Scholar] [CrossRef]
  2. Ozturk, D. G.; Kocak, M.; Akcay, A.; Kinoglu, K.; Kara, E.; Buyuk, Y.; Kazan, H.; Gozuacik, D. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy 2019, 15(3), 375–390. [Google Scholar] [CrossRef]
  3. Hallsson, J. H.; Haflidadóttir, B. S.; Stivers, C.; Odenwald, W.; Arnheiter, H.; Pignoni, F.; Steingrímsson, E. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics 2004, 167(1), 233–41. [Google Scholar] [CrossRef]
  4. Cui, Z.; Napolitano, G.; de Araujo, M. E. G.; Esposito, A.; Monfregola, J.; Huber, L. A.; Ballabio, A.; Hurley, J. H. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 2023, 614(7948), 572–579. [Google Scholar] [CrossRef]
  5. Jones, S. An overview of the basic helix-loop-helix proteins. Genome Biol 2004, 5(6), 226. [Google Scholar] [CrossRef] [PubMed]
  6. Massari, M. E.; Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Molecular and cellular biology 2000, 20(2), 429–440. [Google Scholar] [CrossRef]
  7. Möller, K.; Sigurbjornsdottir, S.; Arnthorsson, A. O.; Pogenberg, V.; Dilshat, R.; Fock, V.; Brynjolfsdottir, S. H.; Bindesboll, C.; Bessadottir, M.; Ogmundsdottir, H. M.; Simonsen, A.; Larue, L.; Wilmanns, M.; Thorsson, V.; Steingrimsson, E.; Ogmundsdottir, M. H. MITF has a central role in regulating starvation-induced autophagy in melanoma. Scientific Reports 2019, 9(1), 1055. [Google Scholar] [CrossRef] [PubMed]
  8. Sardiello, M.; Palmieri, M.; Di Ronza, A.; Medina, D. L.; Valenza, M.; Gennarino, V. A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R. S. A gene network regulating lysosomal biogenesis and function. Science 2009, 325(5939), 473–477. [Google Scholar] [CrossRef]
  9. Aksan, I.; Goding, C. Targeting the microphthalmia basic helix-loop-helix–leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Molecular and cellular biology 1998, 18(12), 6930–6938. [Google Scholar] [CrossRef]
  10. Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D. L.; Valenza, M.; Gennarino, V. A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R. S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A Gene Network Regulating Lysosomal Biogenesis and Function. Science 2009, 325(5939), 473–477. [Google Scholar] [CrossRef] [PubMed]
  11. Martina, J. A.; Diab, H. I.; Lishu, L.; Jeong, A. L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014, 7(309), ra9. [Google Scholar] [CrossRef] [PubMed]
  12. Ploper, D.; Taelman, V. F.; Robert, L.; Perez, B. S.; Titz, B.; Chen, H.-W.; Graeber, T. G.; von Euw, E.; Ribas, A.; De Robertis, E. M. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proceedings of the National Academy of Sciences 2015, 112(5), E420–E429. [Google Scholar] [CrossRef]
  13. Perera, R. M.; Stoykova, S.; Nicolay, B. N.; Ross, K. N.; Fitamant, J.; Boukhali, M.; Lengrand, J.; Deshpande, V.; Selig, M. K.; Ferrone, C. R. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 2015, 524(7565), 361–365. [Google Scholar] [CrossRef] [PubMed]
  14. Nezich, C. L.; Wang, C.; Fogel, A. I.; Youle, R. J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 2015, 210(3), 435–50. [Google Scholar] [CrossRef]
  15. Proaño-Pérez, E.; Serrano-Candelas, E.; Guerrero, M.; Gómez-Peregrina, D.; Llorens, C.; Soriano, B.; Gámez-Valero, A.; Herrero-Lorenzo, M.; Martí, E.; Serrano, C.; Martin, M. MITF regulates autophagy and extracellular vesicle cargo in gastrointestinal stromal tumors. Mol Biomed 2025, 6(1), 92. [Google Scholar] [CrossRef] [PubMed]
  16. Di Malta, C.; Zampelli, A.; Granieri, L.; Vilardo, C.; De Cegli, R.; Cinque, L.; Nusco, E.; Pece, S.; Tosoni, D.; Sanguedolce, F.; Sorrentino, N. C.; Merino, M. J.; Nielsen, D.; Srinivasan, R.; Ball, M. W.; Ricketts, C. J.; Vocke, C. D.; Lang, M.; Karim, B.; Lanfrancone, L.; Schmidt, L. S.; Linehan, W. M.; Ballabio, A. TFEB and TFE3 drive kidney cystogenesis and tumorigenesis. EMBO Mol Med 2023, 15(5), e16877. [Google Scholar] [CrossRef]
  17. Settembre, C.; Di Malta, C.; Polito, V. A.; Arencibia, M. G.; Vetrini, F.; Erdin, S.; Erdin, S. U.; Huynh, T.; Medina, D.; Colella, P.; Sardiello, M.; Rubinsztein, D. C.; Ballabio, A. TFEB Links Autophagy to Lysosomal Biogenesis. Science 2011, 332(6036), 1429–1433. [Google Scholar] [CrossRef]
  18. Betschinger, J.; Nichols, J.; Dietmann, S.; Corrin, P. D.; Paddison, P. J.; Smith, A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 2013, 153(2), 335–47. [Google Scholar] [CrossRef]
  19. Villegas, F.; Lehalle, D.; Mayer, D.; Rittirsch, M.; Stadler, M. B.; Zinner, M.; Olivieri, D.; Vabres, P.; Duplomb-Jego, L.; De Bont, E.; Duffourd, Y.; Duijkers, F.; Avila, M.; Geneviève, D.; Houcinat, N.; Jouan, T.; Kuentz, P.; Lichtenbelt, K. D.; Thauvin-Robinet, C.; St-Onge, J.; Thevenon, J.; van Gassen, K. L. I.; van Haelst, M.; van Koningsbruggen, S.; Hess, D.; Smallwood, S. A.; Rivière, J. B.; Faivre, L.; Betschinger, J. Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3. Cell Stem Cell 2019, 24(2), 257–270.e8. [Google Scholar] [CrossRef]
  20. Salma, N.; Song, J. S.; Arany, Z.; Fisher, D. E. Transcription Factor Tfe3 Directly Regulates Pgc-1alpha in Muscle. J Cell Physiol 2015, 230(10), 2330–6. [Google Scholar] [CrossRef]
  21. Tsun, Z. Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D. M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013, 52(4), 495–505. [Google Scholar] [CrossRef] [PubMed]
  22. Nardone, C.; Palanski, B. A.; Scott, D. C.; Timms, R. T.; Barber, K. W.; Gu, X.; Mao, A.; Leng, Y.; Watson, E. V.; Schulman, B. A.; Cole, P. A.; Elledge, S. J. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Molecular Cell 2023, 83(1), 57–73.e9. [Google Scholar] [CrossRef]
  23. Malik, N.; Ferreira, B. I.; Hollstein, P. E.; Curtis, S. D.; Trefts, E.; Weiser Novak, S.; Yu, J.; Gilson, R.; Hellberg, K.; Fang, L.; Sheridan, A.; Hah, N.; Shadel, G. S.; Manor, U.; Shaw, R. J. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023, 380(6642), eabj5559. [Google Scholar] [CrossRef]
  24. Mansueto, G.; Armani, A.; Viscomi, C.; D’Orsi, L.; De Cegli, R.; Polishchuk, E. V.; Lamperti, C.; Di Meo, I.; Romanello, V.; Marchet, S.; Saha, P. K.; Zong, H.; Blaauw, B.; Solagna, F.; Tezze, C.; Grumati, P.; Bonaldo, P.; Pessin, J. E.; Zeviani, M.; Sandri, M.; Ballabio, A. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism 2017, 25(1), 182–196. [Google Scholar] [CrossRef]
  25. Haq, R.; Shoag, J.; Andreu-Perez, P.; Yokoyama, S.; Edelman, H.; Rowe, Glenn C.; Frederick, Dennie T.; Hurley, Aeron D.; Nellore, A.; Kung, Andrew L.; Wargo, Jennifer A.; Song, Jun S.; Fisher, David E.; Arany, Z.; Widlund, Hans R. Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell 2013, 23(3), 302–315. [Google Scholar] [CrossRef] [PubMed]
  26. Vazquez, F.; Lim, J.-H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, Clary B.; Granter, Scott R.; Widlund, Hans R.; Spiegelman, Bruce M.; Puigserver, P. PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell 2013, 23(3), 287–301. [Google Scholar] [CrossRef]
  27. Martina, J. A.; Diab, H. I.; Brady, O. A.; Puertollano, R. TFEB and TFE3 are novel components of the integrated stress response. Embo j 2016, 35(5), 479–95. [Google Scholar] [CrossRef]
  28. Cinque, L.; De Leonibus, C.; Iavazzo, M.; Krahmer, N.; Intartaglia, D.; Salierno, F. G.; De Cegli, R.; Di Malta, C.; Svelto, M.; Lanzara, C.; Maddaluno, M.; Wanderlingh, L. G.; Huebner, A. K.; Cesana, M.; Bonn, F.; Polishchuk, E.; Hübner, C. A.; Conte, I.; Dikic, I.; Mann, M.; Ballabio, A.; Sacco, F.; Grumati, P.; Settembre, C. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. The EMBO Journal 2020, 39(17), EMBJ2020105696. [Google Scholar] [CrossRef]
  29. Martina, J. A.; Puertollano, R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. Journal of Biological Chemistry 2018, 293(32), 12525–12534. [Google Scholar] [CrossRef]
  30. Xu, G.; Chen, H.; Cong, Z.; Zhou, L.; Zhao, N.; Yang, Y.; Li, T.; Liu, X.; Wang, Y.; Li, B. TFE3-mediated lysosomal biogenesis and homeostasis alleviates arsenic-induced lysosomal and immune dysfunction in macrophages. Ecotoxicology and Environmental Safety 2025, 299, 118374. [Google Scholar] [CrossRef] [PubMed]
  31. Pastore, N.; Brady, O. A.; Diab, H. I.; Martina, J. A.; Sun, L.; Huynh, T.; Lim, J. A.; Zare, H.; Raben, N.; Ballabio, A.; Puertollano, R. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016, 12(8), 1240–58. [Google Scholar] [CrossRef] [PubMed]
  32. Guo, Y.; Olle, L.; Proano-Perez, E.; Aparicio, C.; Guerrero, M.; Muñoz-Cano, R.; Martin, M. MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway. Frontiers in Immunology 2023, 14, 1154108. [Google Scholar] [CrossRef] [PubMed]
  33. Ohanna, M.; Giuliano, S.; Bonet, C.; Imbert, V.; Hofman, V.; Zangari, J.; Bille, K.; Robert, C.; Bressac-de Paillerets, B.; Hofman, P.; Rocchi, S.; Peyron, J. F.; Lacour, J. P.; Ballotti, R.; Bertolotto, C. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 2011, 25(12), 1245–61. [Google Scholar] [CrossRef]
  34. Lapierre, L. R.; De Magalhaes Filho, C. D.; McQuary, P. R.; Chu, C.-C.; Visvikis, O.; Chang, J. T.; Gelino, S.; Ong, B.; Davis, A. E.; Irazoqui, J. E.; Dillin, A.; Hansen, M. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature Communications 2013, 4(1), 2267. [Google Scholar] [CrossRef]
  35. Condon, K. J.; Sabatini, D. M. Nutrient regulation of mTORC1 at a glance. J Cell Sci 2019, 132, 21. [Google Scholar] [CrossRef]
  36. Zwakenberg, S.; Westland, D.; van Es, R. M.; Rehmann, H.; Anink, J.; Ciapaite, J.; Bosma, M.; Stelloo, E.; Liv, N.; Sobrevals Alcaraz, P.; Verhoeven-Duif, N. M.; Jans, J. J. M.; Vos, H. R.; Aronica, E.; Zwartkruis, F. J. T. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Molecular Cell 2024, 84(22), 4368–4384.e6. [Google Scholar] [CrossRef]
  37. Agostini, F.; Agostinis, R.; Medina, D. L.; Bisaglia, M.; Greggio, E.; Plotegher, N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022, 59(8), 5000–5023. [Google Scholar] [CrossRef]
  38. Vu, H. N.; Dilshat, R.; Fock, V.; Steingrímsson, E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell & Melanoma Research 2021, 34(1), 13–27. [Google Scholar]
  39. Oppezzo, A.; Rosselli, F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021, 11(1), 18. [Google Scholar] [CrossRef]
  40. Udono, T.; Yasumoto, K.-i.; Takeda, K.; Amae, S.; Watanabe, K.-i.; Saito, H.; Fuse, N.; Tachibana, M.; Takahashi, K.; Tamai, M. Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 2000, 1491(1-3), 205–219. [Google Scholar] [CrossRef]
  41. Amae, S.; Fuse, N.; Yasumoto, K.-i.; Sato, S.; Yajima, I.; Yamamoto, H.; Udono, T.; Durlu, Y. K.; Tamai, M.; Takahashi, K. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochemical and biophysical research communications 1998, 247(3), 710–715. [Google Scholar] [CrossRef]
  42. Maruotti, J.; Thein, T.; Zack, D. J.; Esumi, N. MITF-M, a “melanocyte-specific” isoform, is expressed in the adult retinal pigment epithelium. Pigment cell & melanoma research 2012, 25(5), 641. [Google Scholar]
  43. Flesher, J. L.; Paterson-Coleman, E. K.; Vasudeva, P.; Ruiz-Vega, R.; Marshall, M.; Pearlman, E.; MacGregor, G. R.; Neumann, J.; Ganesan, A. K. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020, 33(2), 279–292. [Google Scholar] [CrossRef]
  44. Goding, C. R.; Arnheiter, H. MITF—the first 25 years. Genes & development 2019, 33(15-16), 983–1007. [Google Scholar]
  45. Watanabe, A.; Takeda, K.; Ploplis, B.; Tachibana, M. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 1998, 18(3), 283–6. [Google Scholar] [CrossRef]
  46. Potterf, S. B.; Furumura, M.; Dunn, K. J.; Arnheiter, H.; Pavan, W. J. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000, 107(1), 1–6. [Google Scholar] [CrossRef] [PubMed]
  47. Lang, D.; Epstein, J. A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 2003, 12(8), 937–45. [Google Scholar] [CrossRef]
  48. Goodall, J.; Carreira, S.; Denat, L.; Kobi, D.; Davidson, I.; Nuciforo, P.; Sturm, R. A.; Larue, L.; Goding, C. R. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 2008, 68(19), 7788–94. [Google Scholar] [CrossRef] [PubMed]
  49. Faião-Flores, F.; Alves-Fernandes, D. K.; Pennacchi, P. C.; Sandri, S.; Vicente, A. L. S. A.; Scapulatempo-Neto, C.; Vazquez, V. L.; Reis, R. M.; Chauhan, J.; Goding, C. R.; Smalley, K. S.; Maria-Engler, S. S. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 2017, 36(13), 1849–1861. [Google Scholar] [CrossRef]
  50. Shibahara, S.; Takeda, K.; Yasumoto, K.-i.; Udono, T.; Watanabe, K.-i.; Saito, H.; Takahashi, K. Microphthalmia-Associated Transcription Factor (MITF): Multiplicity in Structure, Function, and Regulation. Journal of Investigative Dermatology Symposium Proceedings 2001, 6(1), 99–104. [Google Scholar] [CrossRef]
  51. Huber, W. E.; Price, E. R.; Widlund, H. R.; Du, J.; Davis, I. J.; Wegner, M.; Fisher, D. E. A Tissue-restricted cAMP Transcriptional Response: SOX10 MODULATES α-MELANOCYTE-STIMULATING HORMONE-TRIGGERED EXPRESSION OF MICROPHTHALMIA-ASSOCIATED TRANSCRIPTION FACTOR IN MELANOCYTES *. Journal of Biological Chemistry 2003, 278(46), 45224–45230. [Google Scholar] [CrossRef]
  52. Ngeow, K. C.; Friedrichsen, H. J.; Li, L.; Zeng, Z.; Andrews, S.; Volpon, L.; Brunsdon, H.; Berridge, G.; Picaud, S.; Fischer, R.; Lisle, R.; Knapp, S.; Filippakopoulos, P.; Knowles, H.; Steingrímsson, E.; Borden, K. L. B.; Patton, E. E.; Goding, C. R. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 2018, 115(37), E8668–e8677. [Google Scholar] [CrossRef]
  53. Estrada, C.; Mirabal-Ortega, L.; Méry, L.; Dingli, F.; Besse, L.; Messaoudi, C.; Loew, D.; Pouponnot, C.; Bertolotto, C.; Eychène, A.; Druillennec, S. MITF activity is regulated by a direct interaction with RAF proteins in melanoma cells. Communications Biology 2022, 5(1), 101. [Google Scholar] [CrossRef] [PubMed]
  54. Murakami, H.; Arnheiter, H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res 2005, 18(4), 265–77. [Google Scholar] [CrossRef] [PubMed]
  55. Miller, A. J.; Levy, C.; Davis, I. J.; Razin, E.; Fisher, D. E. Sumoylation of MITF and its related family members TFE3 and TFEB. J Biol Chem 2005, 280(1), 146–55. [Google Scholar] [CrossRef]
  56. Louphrasitthiphol, P.; Loffreda, A.; Pogenberg, V.; Picaud, S.; Schepsky, A.; Friedrichsen, H.; Zeng, Z.; Lashgari, A.; Thomas, B.; Patton, E. E.; Wilmanns, M.; Filippakopoulos, P.; Lambert, J.-P.; Steingrímsson, E.; Mazza, D.; Goding, C. R. Acetylation reprograms MITF target selectivity and residence time. Nature Communications 2023, 14(1), 6051. [Google Scholar] [CrossRef] [PubMed]
  57. Doronzo, G.; Astanina, E.; Bussolino, F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021, 12, 640061. [Google Scholar]
  58. Kuiper, R. P.; Schepens, M.; Thijssen, J.; Schoenmakers, E. F. P. M.; van Kessel, A. G. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Research 2004, 32(8), 2315–2322. [Google Scholar] [CrossRef]
  59. Tsunemi, T.; Ashe, T. D.; Morrison, B. E.; Soriano, K. R.; Au, J.; Roque, R. A. V.; Lazarowski, E. R.; Damian, V. A.; Masliah, E.; La Spada, A. R. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science translational medicine 2012, 4(142), 142ra97–142ra97. [Google Scholar] [CrossRef]
  60. Zhang, Z.; Qian, Q.; Li, M.; Shao, F.; Ding, W.-X.; Lira, V. A.; Chen, S. X.; Sebag, S. C.; Hotamisligil, G. S.; Cao, H. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 2021, 17(8), 1841–1855. [Google Scholar] [CrossRef]
  61. Ghosh, A.; Jana, M.; Modi, K.; Gonzalez, F. J.; Sims, K. B.; Berry-Kravis, E.; Pahan, K. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem 2015, 290(16), 10309–24. [Google Scholar] [CrossRef]
  62. Suzuki, N.; Johmura, Y.; Wang, T.-W.; Migita, T.; Wu, W.; Noguchi, R.; Yamaguchi, K.; Furukawa, Y.; Nakamura, S.; Miyoshi, I. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy 2021, 17(11), 3776–3793. [Google Scholar] [CrossRef]
  63. Annunziata, I.; van de Vlekkert, D.; Wolf, E.; Finkelstein, D.; Neale, G.; Machado, E.; Mosca, R.; Campos, Y.; Tillman, H.; Roussel, M. F.; Andrew Weesner, J.; Ellen Fremuth, L.; Qiu, X.; Han, M.-J.; Grosveld, G. C.; d’Azzo, A. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nature Communications 2019, 10(1), 3623. [Google Scholar] [CrossRef]
  64. Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P. K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Jürgen Klisch, T.; Wollenberg, A. C.; Di Bernardo, D.; Chan, L.; Irazoqui, J. E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature Cell Biology 2013, 15(6), 647–658. [Google Scholar] [CrossRef]
  65. Settembre, C.; Zoncu, R.; Medina, D. L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M. C. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal 2012, 31(5), 1095–1108. [Google Scholar] [CrossRef] [PubMed]
  66. Roczniak-Ferguson, A.; Petit, C. S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T. C.; Ferguson, S. M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012, 5(228), ra42. [Google Scholar] [CrossRef] [PubMed]
  67. Martina, J. A.; Chen, Y.; Gucek, M.; Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8(6), 903–14. [Google Scholar] [CrossRef]
  68. Takla, M.; Keshri, S.; Rubinsztein, D. C. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO reports 2023, 24(11), e57574. [Google Scholar] [CrossRef]
  69. Chen, H.; Gong, S.; Zhang, H.; Chen, Y.; Liu, Y.; Hao, J.; Liu, H.; Li, X. From the regulatory mechanism of TFEB to its therapeutic implications. Cell Death Discovery 2024, 10(1), 84. [Google Scholar] [CrossRef] [PubMed]
  70. Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy 2017, 13(3), 464–472. [Google Scholar] [CrossRef]
  71. Dibble, C. C.; Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015, 25(9), 545–55. [Google Scholar] [CrossRef]
  72. Zhang, H.; Xiao, X.; Pan, Z.; Dokudovskaya, S. mTOR signaling networks: mechanistic insights and translational frontiers in disease therapeutics. Signal Transduction and Targeted Therapy 2025, 10(1), 428. [Google Scholar] [CrossRef]
  73. Boucher, J.; Kleinridders, A.; Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014, 6(1). [Google Scholar] [CrossRef]
  74. Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002, 4(9), 648–57. [Google Scholar] [CrossRef]
  75. Ma, L.; Chen, Z.; Erdjument-Bromage, H.; Tempst, P.; Pandolfi, P. P. Phosphorylation and Functional Inactivation of TSC2 by Erk: Implications for Tuberous Sclerosisand Cancer Pathogenesis. Cell 2005, 121(2), 179–193. [Google Scholar] [CrossRef]
  76. Mendoza, M. C.; Er, E. E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011, 36(6), 320–8. [Google Scholar] [CrossRef]
  77. Dibble, C. C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J. M.; Finan, P. M.; Kwiatkowski, D. J.; Murphy, L. O.; Manning, B. D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012, 47(4), 535–46. [Google Scholar] [CrossRef] [PubMed]
  78. Rehbein, U.; Prentzell, M. T.; Cadena Sandoval, M.; Heberle, A. M.; Henske, E. P.; Opitz, C. A.; Thedieck, K. The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Front Cell Dev Biol 2021, 9, 751892. [Google Scholar] [CrossRef]
  79. Huang, J.; Dibble, C. C.; Matsuzaki, M.; Manning, B. D. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008, 28(12), 4104–15. [Google Scholar] [CrossRef] [PubMed]
  80. Amemiya, Y.; Ioi, Y.; Araki, M.; Kontani, K.; Maki, M.; Shibata, H.; Takahara, T. Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding. Journal of Biological Chemistry 2025, 301(2), 108122. [Google Scholar] [CrossRef] [PubMed]
  81. Sancak, Y.; Peterson, T. R.; Shaul, Y. D.; Lindquist, R. A.; Thoreen, C. C.; Bar-Peled, L.; Sabatini, D. M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320(5882), 1496–501. [Google Scholar] [CrossRef] [PubMed]
  82. Peña-Llopis, S.; Vega-Rubin-de-Celis, S.; Schwartz, J. C.; Wolff, N. C.; Tran, T. A.; Zou, L.; Xie, X. J.; Corey, D. R.; Brugarolas, J. Regulation of TFEB and V-ATPases by mTORC1. Embo j 2011, 30(16), 3242–58. [Google Scholar] [CrossRef]
  83. Ratto, E.; Chowdhury, S. R.; Siefert, N. S.; Schneider, M.; Wittmann, M.; Helm, D.; Palm, W. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nature Communications 2022, 13(1), 4848. [Google Scholar] [CrossRef]
  84. Sahu, U.; Ben-Sahra, I. GATOR2 rings GATOR1 to speak to mTORC1. Mol Cell 2023, 83(1), 6–8. [Google Scholar] [CrossRef] [PubMed]
  85. Wolfson, R. L.; Chantranupong, L.; Saxton, R. A.; Shen, K.; Scaria, S. M.; Cantor, J. R.; Sabatini, D. M. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016, 351(6268), 43–8. [Google Scholar] [CrossRef]
  86. Chantranupong, L.; Scaria, S. M.; Saxton, R. A.; Gygi, M. P.; Shen, K.; Wyant, G. A.; Wang, T.; Harper, J. W.; Gygi, S. P.; Sabatini, D. M. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 2016, 165(1), 153–164. [Google Scholar] [CrossRef]
  87. Gu, X.; Orozco, J. M.; Saxton, R. A.; Condon, K. J.; Liu, G. Y.; Krawczyk, P. A.; Scaria, S. M.; Harper, J. W.; Gygi, S. P.; Sabatini, D. M. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 2017, 358(6364), 813–818. [Google Scholar] [CrossRef]
  88. Wang, S.; Tsun, Z.-Y.; Wolfson, R. L.; Shen, K.; Wyant, G. A.; Plovanich, M. E.; Yuan, E. D.; Jones, T. D.; Chantranupong, L.; Comb, W.; Wang, T.; Bar-Peled, L.; Zoncu, R.; Straub, C.; Kim, C.; Park, J.; Sabatini, B. L.; Sabatini, D. M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347(6218), 188–194. [Google Scholar] [CrossRef]
  89. Rebsamen, M.; Pochini, L.; Stasyk, T.; de Araújo, M. E. G.; Galluccio, M.; Kandasamy, R. K.; Snijder, B.; Fauster, A.; Rudashevskaya, E. L.; Bruckner, M.; Scorzoni, S.; Filipek, P. A.; Huber, K. V. M.; Bigenzahn, J. W.; Heinz, L. X.; Kraft, C.; Bennett, K. L.; Indiveri, C.; Huber, L. A.; Superti-Furga, G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519(7544), 477–481. [Google Scholar] [CrossRef]
  90. Leprivier, G.; Rotblat, B. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
  91. Bhattacharjee, A.; Abuammar, H.; Juhász, G. Lysosomal activity depends on TRPML1-mediated Ca(2+) release coupled to incoming vesicle fusions. J Biol Chem 2024, 300(12), 107911. [Google Scholar] [CrossRef]
  92. Sun, X.; Yang, Y.; Zhong, X. Z.; Cao, Q.; Zhu, X. H.; Zhu, X.; Dong, X. P. A negative feedback regulation of MTORC1 activity by the lysosomal Ca(2+) channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 2018, 14(1), 38–52. [Google Scholar] [CrossRef]
  93. Puck, J. M.; Stewart, C. C.; Henthorn, P. S. A high-frequency RFLP at the human TFE3 locus on the X chromosome. Nucleic Acids Res 1991, 19(3), 684. [Google Scholar] [CrossRef]
  94. Contreras, P. S.; Martina, J. A.; Rollins, K.; Jeong, E.; Rissone, A.; Puertollano, R. Differential contribution of TFE3 isoforms to cell motility and invasion. EMBO Rep 2026, 27(2), 471–500. [Google Scholar] [CrossRef]
  95. Puertollano, R.; Ferguson, S. M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. Embo j 2018, 37, 11. [Google Scholar] [CrossRef]
  96. Huan, C.; Kelly, M. L.; Steele, R.; Shapira, I.; Gottesman, S. R.; Roman, C. A. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 2006, 7(10), 1082–91. [Google Scholar] [CrossRef]
  97. Raben, N.; Puertollano, R. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress. Annu Rev Cell Dev Biol 2016, 32, 255–278. [Google Scholar] [CrossRef]
  98. Taniguchi, M.; Nadanaka, S.; Tanakura, S.; Sawaguchi, S.; Midori, S.; Kawai, Y.; Yamaguchi, S.; Shimada, Y.; Nakamura, Y.; Matsumura, Y.; Fujita, N.; Araki, N.; Yamamoto, M.; Oku, M.; Wakabayashi, S.; Kitagawa, H.; Yoshida, H. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct 2015, 40(1), 13–30. [Google Scholar] [CrossRef]
  99. Cinque, L.; De Leonibus, C.; Iavazzo, M.; Krahmer, N.; Intartaglia, D.; Salierno, F. G.; De Cegli, R.; Di Malta, C.; Svelto, M.; Lanzara, C.; Maddaluno, M.; Wanderlingh, L. G.; Huebner, A. K.; Cesana, M.; Bonn, F.; Polishchuk, E.; Hübner, C. A.; Conte, I.; Dikic, I.; Mann, M.; Ballabio, A.; Sacco, F.; Grumati, P.; Settembre, C. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. Embo j 2020, 39(17), e105696. [Google Scholar] [CrossRef]
  100. McGuinness, W.; Ryan, B.; Guardado, C. L.; Carling, P.; Vallin, B.; Caiazza, M. C.; Heon-Roberts, R.; Kilfeather, P.; Wantling, J.; Hoffmann, J.; Aird, D.; Lofstromm, K.; Zhang, M.; Cowley, S. A.; Hirst, W. D.; Wade-Martins, R. TFEB and TFE3 have cell-type specific expression in the brain and divergent roles in neurons. bioRxiv 2025, 2025.04.22.649949. [Google Scholar] [CrossRef]
  101. Zhao, G.-Q.; Zhao, Q.; Zhou, X.; Mattei, M.-G.; de Crombrugghe, B. TFEC, a Basic Helix-Loop-Helix Protein, Forms Heterodimers with TFE3 and Inhibits TFE3-Dependent Transcription Activation. Molecular and Cellular Biology 1993, 13(8), 4505–4512. [Google Scholar]
  102. Rehli, M.; Lichanska, A.; Cassady, A. I.; Ostrowski, M. C.; Hume, D. A. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. The Journal of Immunology 1999, 162(3), 1559–1565. [Google Scholar] [CrossRef]
  103. Rehli, M.; Sulzbacher, S.; Pape, S.; Ravasi, T.; Wells, C. A.; Heinz, S.; Söllner, L.; El Chartouni, C.; Krause, S. W.; Steingrimsson, E. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. The Journal of Immunology 2005, 174(11), 7111–7122. [Google Scholar] [CrossRef]
  104. Wang, Y.; Zhu, J.; Zhang, L.; Zhang, Z.; He, L.; Mou, Y.; Deng, Y.; Cao, Y.; Yang, P.; Su, Y. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor α positive feedback loop in M2 macrophages. Journal of Allergy and Clinical Immunology 2017, 140(6), 1550–1561. e8. [Google Scholar] [CrossRef]
  105. Kim, S.; Song, H.-S.; Yu, J.; Kim, Y.-M. MiT Family Transcriptional Factors in Immune Cell Functions. Molecules and Cells 2021, 44(5), 342–355. [Google Scholar] [CrossRef]
  106. Li, W.; Qin, X.; Wang, B.; Xu, G.; Zhang, J.; Jiang, X.; Chen, C.; Qiu, F.; Zou, Z. MiTF is Associated with Chemoresistance to Cisplatin in A549 Lung Cancer Cells via Modulating Lysosomal Biogenesis and Autophagy. Cancer Manag Res 2020, 12, 6563–6573. [Google Scholar] [CrossRef]
  107. Hsiao, Y. J.; Chang, W. H.; Chen, H. Y.; Hsu, Y. C.; Chiu, S. C.; Chiang, C. C.; Chang, G. C.; Chen, Y. J.; Wang, C. Y.; Chen, Y. M.; Lin, C. Y.; Chen, Y. J.; Yang, P. C.; Chen, J. J. W.; Yu, S. L. MITF functions as a tumor suppressor in non-small cell lung cancer beyond the canonically oncogenic role. Aging (Albany NY) 2020, 13(1), 646–674. [Google Scholar] [CrossRef]
  108. Giatromanolaki, A.; Kalamida, D.; Sivridis, E.; Karagounis, I. V.; Gatter, K. C.; Harris, A. L.; Koukourakis, M. I. Increased expression of transcription factor EB (TFEB) is associated with autophagy, migratory phenotype and poor prognosis in non-small cell lung cancer. Lung Cancer 2015, 90(1), 98–105. [Google Scholar] [CrossRef]
  109. Zhao, L.-P.; Wang, H.-J.; Hu, D.; Hu, J.-H.; Guan, Z.-R.; Yu, L.-H.; Jiang, Y.-P.; Tang, X.-Q.; Zhou, Z.-H.; Xie, T.; Lou, J.-S. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. Journal of Advanced Research 2024, 62, 257–272. [Google Scholar] [CrossRef]
  110. Kundu, S. T.; Grzeskowiak, C. L.; Fradette, J. J.; Gibson, L. A.; Rodriguez, L. B.; Creighton, C. J.; Scott, K. L.; Gibbons, D. L. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nature Communications 2018, 9(1), 2731. [Google Scholar] [CrossRef]
  111. Akman, M.; Monteleone, C.; Doronzo, G.; Godel, M.; Napoli, F.; Merlini, A.; Campani, V.; Nele, V.; Balmas, E.; Chontorotzea, T.; Fontana, S.; Digiovanni, S.; Barbu, F. A.; Astanina, E.; Jafari, N.; Salaroglio, I. C.; Kopecka, J.; De Rosa, G.; Mohr, T.; Bertero, A.; Righi, L.; Novello, S.; Scagliotti, G. V.; Bussolino, F.; Riganti, C. TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer. J Exp Clin Cancer Res 2024, 43(1), 219. [Google Scholar] [CrossRef]
  112. Miao, B.; Zhang, C.; Stroh, N.; Brenner, L.; Hufnagel, K.; Hoheisel, J. D.; Bandapalli, O. R. Transcription factor TFE3 enhances cell cycle and cancer progression by binding to the hTERT promoter. Cancer Commun (Lond) 2021, 41(12), 1423–1426. [Google Scholar] [CrossRef]
  113. Agaimy, A.; Stoehr, R.; Michal, M.; Christopoulos, P.; Winter, H.; Zhang, L.; Stenzinger, A.; Michal, M.; Mechtersheimer, G.; Antonescu, C. R. Recurrent YAP1-TFE3 Gene Fusions in Clear Cell Stromal Tumor of the Lung. The American Journal of Surgical Pathology 2021, 45(11), 1541–1549. [Google Scholar] [CrossRef]
  114. MacDonald, W.; Avenarius, M. R.; Aziz, J.; Guo, A.; D’Souza, D. M.; Satturwar, S.; Shilo, K. Perivascular Epithelioid Cell Tumor of the Lung With a Novel YAP1:: TFE3 Fusion. International Journal of Surgical Pathology 2025, 10668969251323936. [CrossRef]
  115. Antonescu, C. R.; Le Loarer, F.; Mosquera, J.-M.; Sboner, A.; Zhang, L.; Chen, C.-L.; Chen, H.-W.; Pathan, N.; Krausz, T.; Dickson, B. C.; Weinreb, I.; Rubin, M. A.; Hameed, M.; Fletcher, C. D. M. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes, Chromosomes and Cancer 2013, 52(8), 775–784. [Google Scholar] [CrossRef]
  116. Zhao, M.; Rao, Q.; Wu, C.; Zhao, Z.; He, X.; Ru, G. Alveolar soft part sarcoma of lung: report of a unique case with emphasis on diagnostic utility of molecular genetic analysis for TFE3 gene rearrangement and immunohistochemistry for TFE3 antigen expression. Diagnostic pathology 2015, 10(1), 160. [Google Scholar] [CrossRef]
  117. Schumacher, T.; Ameline, B.; Vogetseder, A.; Bode, B.; Svantesson, T. An epithelioid hemangioendothelioma with a novel RREB1:: TFE3 gene fusion. Virchows Archiv 2025, 1–5. [CrossRef]
  118. Sun, X.; Dai, Y.; He, J.; Li, H.; Yang, X.; Dong, W.; Xie, X.; Wang, M.; Xu, Y.; Lv, L. D-mannose induces TFE3-dependent lysosomal degradation of EGFR and inhibits the progression of NSCLC. Oncogene 2023, 42(47), 3503–3513. [Google Scholar] [CrossRef]
  119. Theofani, E.; Semitekolou, M.; Samitas, K.; Mais, A.; Galani, I. E.; Triantafyllia, V.; Lama, J.; Morianos, I.; Stavropoulos, A.; Jeong, S. J.; Andreakos, E.; Razani, B.; Rovina, N.; Xanthou, G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022, 77(7), 2131–2146. [Google Scholar] [CrossRef]
  120. Yu, Q.; Zhou, Y.; Wang, J.; Zhang, M.; Di, C.; Wu, Y.; Wu, Q.; Su, W.; Cheng, J.; Lv, J.; Wu, M.; Xia, Z. Transcription Factor EB SUMOylation in Airway Epithelial Cells Impairs Lysosomal Biogenesis to Promote Asthma Development. Am J Respir Cell Mol Biol 2025, 73(3), 451–465. [Google Scholar] [CrossRef]
  121. Xiang, J.; Liu, B.; Li, Y.; Ren, Y.; Li, Y.; Zhou, M.; Yu, J.; Luo, Z.; Liu, E.; Fu, Z.; Ding, F. TFEB regulates dendritic cell antigen presentation to modulate immune balance in asthma. Respir Res 2024, 25(1), 182. [Google Scholar] [CrossRef]
  122. Wang, Z.; Zhao, P.; Yan, G.; Sun, A.; Xu, L.; Li, J.; Zhai, X.; Liu, X.; Mei, T.; Xuan, Y.; Nie, Y. Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells. Respir Res 2025, 26(1), 50. [Google Scholar] [CrossRef]
  123. Govindaraju, V. K.; Bodas, M.; Vij, N. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 2017, 12(8), e0182420. [Google Scholar] [CrossRef]
  124. Zhang, L.; Huang, J.; Dong, R.; Feng, Y.; Zhou, M. Therapeutic potential of BLT1 antagonist for COPD: involvement of inducing autophagy and ameliorating inflammation. Drug Des Devel Ther 2019, 13, 3105–3116. [Google Scholar] [CrossRef]
  125. Sul, O. J.; Choi, H. W.; Oh, J.; Ra, S. W. GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food Chem Toxicol 2023, 177, 113795. [Google Scholar] [CrossRef]
  126. Schmidt, L. S.; Linehan, W. M. Molecular genetics and clinical features of Birt-Hogg-Dubé syndrome. Nat Rev Urol 2015, 12(10), 558–69. [Google Scholar] [CrossRef]
  127. Dal Sasso, A. A.; Belém, L. C.; Zanetti, G.; Souza, C. A.; Escuissato, D. L.; Irion, K. L.; Guimarães, M. D.; Marchiori, E. Birt-Hogg-Dubé syndrome. State-of-the-art review with emphasis on pulmonary involvement. Respir Med 2015, 109(3), 289–96. [Google Scholar] [CrossRef]
  128. Hong, S. B.; Oh, H.; Valera, V. A.; Baba, M.; Schmidt, L. S.; Linehan, W. M. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 2010, 5(12), e15793. [Google Scholar] [CrossRef]
  129. Chu, L.; Luo, Y.; Chen, H.; Miao, Q.; Wang, L.; Moats, R.; Wang, T.; Kennedy, J. C.; Henske, E. P.; Shi, W. Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax 2020, 75(6), 486–493. [Google Scholar] [CrossRef]
  130. Kennedy, J. C.; Khabibullin, D.; Hougard, T.; Nijmeh, J.; Shi, W.; Henske, E. P. Loss of FLCN inhibits canonical WNT signaling via TFE3. Hum Mol Genet 2019, 28(19), 3270–3281. [Google Scholar] [CrossRef]
  131. Huang, J.; Xu, W.; Liu, P.; Liu, Y.; Shen, C.; Liu, S.; Wang, Y.; Wang, J.; Zhang, T.; He, Y.; Cheng, C.; Yang, L.; Zhang, W.; Tian, X.; Xu, K. F. Gene mutations in sporadic lymphangioleiomyomatosis and genotype-phenotype correlation analysis. BMC Pulm Med 2022, 22(1), 354. [Google Scholar] [CrossRef]
  132. Steagall, W. K.; Zhang, L.; Cai, X.; Pacheco-Rodriguez, G.; Moss, J. Genetic heterogeneity of circulating cells from patients with lymphangioleiomyomatosis with and without lung transplantation. Am J Respir Crit Care Med 2015, 191(7), 854–6. [Google Scholar] [CrossRef]
  133. Sato, T.; Seyama, K.; Fujii, H.; Maruyama, H.; Setoguchi, Y.; Iwakami, S.; Fukuchi, Y.; Hino, O. Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 2002, 47(1), 20–8. [Google Scholar] [CrossRef]
  134. Muzykewicz, D. A.; Sharma, A.; Muse, V.; Numis, A. L.; Rajagopal, J.; Thiele, E. A. TSC1 and TSC2 mutations in patients with lymphangioleiomyomatosis and tuberous sclerosis complex. Journal of Medical Genetics 2009, 46(7), 465. [Google Scholar]
  135. Prizant, H.; Hammes, S. R. Minireview: Lymphangioleiomyomatosis (LAM): The “Other” Steroid-Sensitive Cancer. Endocrinology 2016, 157(9), 3374–83. [Google Scholar] [CrossRef]
  136. Constantin, A.-A.; Gaburici, A. D.; Malaescu, A. N.; Iorga, A.-L.; Dragosloveanu, C. D. M.; Poenaru, M.-O.; Gorecki, G.-P.; Amza, M.; Georgescu, M.-T.; Dragomir, R.-E.; Popescu, M.; Sima, R.-M. Lymphangioleiomyomatosis and Pregnancy—Do We Have All the Answers for a Woman Who Desires to Conceive?—Literature Review. Cancers 2025, 17(2), 323. [Google Scholar] [CrossRef]
  137. AlHarthi, M.; Hawari, M. A successful pregnancy in advanced lymphangioleiomyomatosis: A case report and review of pregnancy management in LAM. International Journal of Gynecology & Obstetrics. n/a, (n/a).. [CrossRef]
  138. Zak, S.; Mokhallati, N.; Su, W.; McCormack, F. X.; Franz, D. N.; Mays, M.; Krueger, D. A.; Szczesniak, R. D.; Gupta, N. Lymphangioleiomyomatosis Mortality in Patients with Tuberous Sclerosis Complex. Ann Am Thorac Soc 2019, 16(4), 509–512. [Google Scholar] [CrossRef]
  139. McCormack, F. X.; Inoue, Y.; Moss, J.; Singer, L. G.; Strange, C.; Nakata, K.; Barker, A. F.; Chapman, J. T.; Brantly, M. L.; Stocks, J. M. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. New England Journal of Medicine 2011, 364(17), 1595–1606. [Google Scholar] [CrossRef]
  140. Revilla-López, E.; Berastegui, C.; Méndez, A.; Sáez-Giménez, B.; Ruiz de Miguel, V.; López-Meseguer, M.; Monforte, V.; Bravo, C.; Pujana, M. A.; Ramon, M. A.; Gómez-Ollés, S.; Roman, A.; Bello, I.; Burgos, R.; Escobar, R.; Ferrándiz-Pulido, C.; Gómez, A.; Pallisa, E.; Palomares, G.; Salicrú, S.; Sánchez Martínez, A. L.; Sansano, I.; Sellarés, J. The Vall d’Hebron Multidisciplinary Cystic Lung Disease, G., Long-term results of sirolimus treatment in lymphangioleiomyomatosis: a single referral centre experience. Scientific Reports 2021, 11(1), 10171. [Google Scholar] [CrossRef]
  141. Dilling, D. F.; Nair, A.; Gries, C. J.; Leard, L. E.; Fisher, A. J.; Johnson, S. R.; McCormack, F. X. Use of Sirolimus in Patients with Lymphangioleiomyomatosis (LAM) on Waiting Lists for Lung Transplant (LTX). The Journal of Heart and Lung Transplantation 2018, 37(4), S457. [Google Scholar] [CrossRef]
  142. Alesi, N.; Khabibullin, D.; Rosenthal, D. M.; Akl, E. W.; Cory, P. M.; Alchoueiry, M.; Salem, S.; Daou, M.; Gibbons, W. F.; Chen, J. A.; Zhang, L.; Filippakis, H.; Graciotti, L.; Miceli, C.; Monfregola, J.; Vilardo, C.; Morroni, M.; Di Malta, C.; Napolitano, G.; Ballabio, A.; Henske, E. P. TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex. Nat Commun 2024, 15(1), 406. [Google Scholar] [CrossRef]
  143. Du, Y.; Guo, M.; Wu, Y.; Wagner, A.; Perl, A. K.; Wikenheiser-Brokamp, K.; Yu, J.; Gupta, N.; Kopras, E.; Krymskaya, V.; Obraztsova, K.; Tang, Y.; Kwiatkowski, D.; Henske, E. P.; McCormack, F.; Xu, Y. Lymphangioleiomyomatosis (LAM) Cell Atlas. Thorax 2023, 78(1), 85–87. [Google Scholar] [CrossRef]
  144. Koc-Gunel, S.; Liu, E. C.; Gautam, L. K.; Calvert, B. A.; Murthy, S.; Harriott, N. C.; Nawroth, J. C.; Zhou, B.; Krymskaya, V. P.; Ryan, A. L. Targeting fibroblast–endothelial cell interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics. JCI Insight 2025, 10(6). [Google Scholar] [CrossRef]
  145. Liu, H. J.; Diesler, R.; Chami, J.; Wu, B.; Du, H.; Jin, Y.; Daou, M.; Alesi, N.; Khabibullin, D.; Leroux, C.; Cottin, V.; Cantley, L. G.; Rudloff, U.; Henske, E. P. Modulation of infiltrating CD206(+) macrophages restricts progression of pulmonary lymphangioleiomyomatosis. Eur Respir J 2025, 66(5). [Google Scholar] [CrossRef]
  146. Chen, K.; Zhao, S.; Guo, M.; Reza, H.; Wagner, A.; Cakar, A. C.; Jiang, C.; Zhang, E.; Green, J.; Martin, E.; Wikenheiser-Brokamp, K.; Perl, A. K.; Sinner, D.; Yu, J.; Xu, Y. Decoding Lymphangioleiomyomatosis (LAM) Niche Environment via Integrative Analysis of Single Cell Multiomics and Spatial Transcriptomics. bioRxiv 2025, 2025.07.07.663390. [Google Scholar] [CrossRef]
  147. Jezela-Stanek, A.; Chorostowska-Wynimko, J.; Tylki-Szymańska, A. Pulmonary involvement in selected lysosomal storage diseases and the impact of enzyme replacement therapy: A state-of-the art review. Clin Respir J 2020, 14(5), 422–429. [Google Scholar] [CrossRef]
  148. Montanari, C.; Tagi, V. M.; D’Auria, E.; Guaia, V.; Di Gallo, A.; Ghezzi, M.; Verduci, E.; Fiori, L.; Zuccotti, G. Lung Diseases and Rare Disorders: Is It a Lysosomal Storage Disease? Differential Diagnosis, Pathogenetic Mechanisms and Management. Children 2024, 11(6), 668. [Google Scholar] [CrossRef]
  149. Gülhan, B.; Ozçelik, U.; Gürakan, F.; Güçer, S.; Orhan, D.; Cinel, G.; Yalçin, E.; Ersöz, D. D.; Kiper, N.; Yüce, A.; Kale, G. Different features of lung involvement in Niemann-Pick disease and Gaucher disease. Respir Med 2012, 106(9), 1278–85. [Google Scholar] [CrossRef]
  150. von Ranke, F. M.; Pereira Freitas, H. M.; Mançano, A. D.; Rodrigues, R. S.; Hochhegger, B.; Escuissato, D.; Araujo Neto, C. A.; da Silva, T. K.; Marchiori, E. Pulmonary Involvement in Niemann-Pick Disease: A State-of-the-Art Review. Lung 2016, 194(4), 511–8. [Google Scholar] [CrossRef]
  151. Narayanan, S.; Catherman, K.; Pajor, N.; McCormack, F. X. Pulmonary Manifestations of Lysosomal Storage Disorders in Adults. Clinics in Chest Medicine 2025, 46(4), 739–753. [Google Scholar] [CrossRef] [PubMed]
  152. Du, K.; Chen, H.; Pan, Z.; Zhao, M.; Cheng, S.; Luo, Y.; Zhang, W.; Li, D. Small-molecule Activation of TFEB Alleviates Niemann-Pick Disease Type C via Promoting Lysosomal Exocytosis and Biogenesis; eLife Sciences Publications, Ltd; 2025. [Google Scholar]
  153. Liu, W.; Li, C.-C.; Lu, X.; Bo, L.-Y.; Jin, F.-G. Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chinese Medical Journal 2019, 132(11), 1298–1304. [Google Scholar] [CrossRef] [PubMed]
  154. He, X.; Chen, S.; Li, C.; Ban, J.; Wei, Y.; He, Y.; Liu, F.; Chen, Y.; Chen, J. Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages. Cells 2020, 9(1). [Google Scholar] [CrossRef]
  155. Rodrigues, R.; Olivo, C. R.; Lourenço, J. D.; Riane, A.; Cervilha, D. A. B.; Ito, J. T.; Martins, M. A.; Lopes, F. A murine model of elastase- and cigarette smoke-induced emphysema. J Bras Pneumol 2017, 43(2), 95–100. [Google Scholar] [CrossRef]
  156. Hidvegi, T.; Stolz, D. B.; Alcorn, J. F.; Yousem, S. A.; Wang, J.; Leme, A. S.; Houghton, A. M.; Hale, P.; Ewing, M.; Cai, H.; Garchar, E. A.; Pastore, N.; Annunziata, P.; Kaminski, N.; Pilewski, J.; Shapiro, S. D.; Pak, S. C.; Silverman, G. A.; Brunetti-Pierri, N.; Perlmutter, D. H. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy. J Biol Chem 2015, 290(50), 29742–57. [Google Scholar] [CrossRef]
  157. Martina, J. A.; Puertollano, R. TFEB and TFE3: The art of multi-tasking under stress conditions. Transcription 2017, 8(1), 48–54. [Google Scholar] [CrossRef] [PubMed]
  158. Wang, J.; Song, X.; Hui, Y.; Dong, B.; Gong, J.; Zhao, Y.; Ji, H.; Qiu, Y.; Jiang, S.; Guo, D.; Gao, X. TFEB orchestrates ferritinophagy and ferroptosis in ionophore drug-induced hepatotoxicity: unveiling a novel therapeutic avenue. Free Radic Biol Med 2025, 236, 116–133. [Google Scholar] [CrossRef]
  159. Zoncu, R.; Perera, R. M. Emerging roles of the MiT/TFE factors in cancer. Trends in Cancer 2023, 9(10), 817–827. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated