Submitted:
02 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Regulation of MiTF/TFE Transcription Factors
2.1. MITF
2.2. TFEB
2.3. TFE3
2.4. TFEC
3. Role in Human Pulmonary Diseases
3.1. Lung Tumors and Cancer Progression
3.2. Asthma
3.3. COPD/Emphysema
3.4. Interstitial Lung Diseases
3.4.1. Birt–Hogg–Dubé (BHD) Syndrome
3.4.2. Lymphangioleiomyomatosis (LAM)
3.4.3. Pulmonary Lysosomal Storage Diseases (LSDs)
3.5. Acute Lung Injury and Fibrosis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- La Spina, M.; Contreras, P. S.; Rissone, A.; Meena, N. K.; Jeong, E.; Martina, J. A. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2020, 8, 609683. [Google Scholar] [CrossRef]
- Ozturk, D. G.; Kocak, M.; Akcay, A.; Kinoglu, K.; Kara, E.; Buyuk, Y.; Kazan, H.; Gozuacik, D. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy 2019, 15(3), 375–390. [Google Scholar] [CrossRef]
- Hallsson, J. H.; Haflidadóttir, B. S.; Stivers, C.; Odenwald, W.; Arnheiter, H.; Pignoni, F.; Steingrímsson, E. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development. Genetics 2004, 167(1), 233–41. [Google Scholar] [CrossRef]
- Cui, Z.; Napolitano, G.; de Araujo, M. E. G.; Esposito, A.; Monfregola, J.; Huber, L. A.; Ballabio, A.; Hurley, J. H. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 2023, 614(7948), 572–579. [Google Scholar] [CrossRef]
- Jones, S. An overview of the basic helix-loop-helix proteins. Genome Biol 2004, 5(6), 226. [Google Scholar] [CrossRef] [PubMed]
- Massari, M. E.; Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Molecular and cellular biology 2000, 20(2), 429–440. [Google Scholar] [CrossRef]
- Möller, K.; Sigurbjornsdottir, S.; Arnthorsson, A. O.; Pogenberg, V.; Dilshat, R.; Fock, V.; Brynjolfsdottir, S. H.; Bindesboll, C.; Bessadottir, M.; Ogmundsdottir, H. M.; Simonsen, A.; Larue, L.; Wilmanns, M.; Thorsson, V.; Steingrimsson, E.; Ogmundsdottir, M. H. MITF has a central role in regulating starvation-induced autophagy in melanoma. Scientific Reports 2019, 9(1), 1055. [Google Scholar] [CrossRef] [PubMed]
- Sardiello, M.; Palmieri, M.; Di Ronza, A.; Medina, D. L.; Valenza, M.; Gennarino, V. A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R. S. A gene network regulating lysosomal biogenesis and function. Science 2009, 325(5939), 473–477. [Google Scholar] [CrossRef]
- Aksan, I.; Goding, C. Targeting the microphthalmia basic helix-loop-helix–leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Molecular and cellular biology 1998, 18(12), 6930–6938. [Google Scholar] [CrossRef]
- Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D. L.; Valenza, M.; Gennarino, V. A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R. S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A Gene Network Regulating Lysosomal Biogenesis and Function. Science 2009, 325(5939), 473–477. [Google Scholar] [CrossRef] [PubMed]
- Martina, J. A.; Diab, H. I.; Lishu, L.; Jeong, A. L.; Patange, S.; Raben, N.; Puertollano, R. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014, 7(309), ra9. [Google Scholar] [CrossRef] [PubMed]
- Ploper, D.; Taelman, V. F.; Robert, L.; Perez, B. S.; Titz, B.; Chen, H.-W.; Graeber, T. G.; von Euw, E.; Ribas, A.; De Robertis, E. M. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proceedings of the National Academy of Sciences 2015, 112(5), E420–E429. [Google Scholar] [CrossRef]
- Perera, R. M.; Stoykova, S.; Nicolay, B. N.; Ross, K. N.; Fitamant, J.; Boukhali, M.; Lengrand, J.; Deshpande, V.; Selig, M. K.; Ferrone, C. R. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 2015, 524(7565), 361–365. [Google Scholar] [CrossRef] [PubMed]
- Nezich, C. L.; Wang, C.; Fogel, A. I.; Youle, R. J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 2015, 210(3), 435–50. [Google Scholar] [CrossRef]
- Proaño-Pérez, E.; Serrano-Candelas, E.; Guerrero, M.; Gómez-Peregrina, D.; Llorens, C.; Soriano, B.; Gámez-Valero, A.; Herrero-Lorenzo, M.; Martí, E.; Serrano, C.; Martin, M. MITF regulates autophagy and extracellular vesicle cargo in gastrointestinal stromal tumors. Mol Biomed 2025, 6(1), 92. [Google Scholar] [CrossRef] [PubMed]
- Di Malta, C.; Zampelli, A.; Granieri, L.; Vilardo, C.; De Cegli, R.; Cinque, L.; Nusco, E.; Pece, S.; Tosoni, D.; Sanguedolce, F.; Sorrentino, N. C.; Merino, M. J.; Nielsen, D.; Srinivasan, R.; Ball, M. W.; Ricketts, C. J.; Vocke, C. D.; Lang, M.; Karim, B.; Lanfrancone, L.; Schmidt, L. S.; Linehan, W. M.; Ballabio, A. TFEB and TFE3 drive kidney cystogenesis and tumorigenesis. EMBO Mol Med 2023, 15(5), e16877. [Google Scholar] [CrossRef]
- Settembre, C.; Di Malta, C.; Polito, V. A.; Arencibia, M. G.; Vetrini, F.; Erdin, S.; Erdin, S. U.; Huynh, T.; Medina, D.; Colella, P.; Sardiello, M.; Rubinsztein, D. C.; Ballabio, A. TFEB Links Autophagy to Lysosomal Biogenesis. Science 2011, 332(6036), 1429–1433. [Google Scholar] [CrossRef]
- Betschinger, J.; Nichols, J.; Dietmann, S.; Corrin, P. D.; Paddison, P. J.; Smith, A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 2013, 153(2), 335–47. [Google Scholar] [CrossRef]
- Villegas, F.; Lehalle, D.; Mayer, D.; Rittirsch, M.; Stadler, M. B.; Zinner, M.; Olivieri, D.; Vabres, P.; Duplomb-Jego, L.; De Bont, E.; Duffourd, Y.; Duijkers, F.; Avila, M.; Geneviève, D.; Houcinat, N.; Jouan, T.; Kuentz, P.; Lichtenbelt, K. D.; Thauvin-Robinet, C.; St-Onge, J.; Thevenon, J.; van Gassen, K. L. I.; van Haelst, M.; van Koningsbruggen, S.; Hess, D.; Smallwood, S. A.; Rivière, J. B.; Faivre, L.; Betschinger, J. Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3. Cell Stem Cell 2019, 24(2), 257–270.e8. [Google Scholar] [CrossRef]
- Salma, N.; Song, J. S.; Arany, Z.; Fisher, D. E. Transcription Factor Tfe3 Directly Regulates Pgc-1alpha in Muscle. J Cell Physiol 2015, 230(10), 2330–6. [Google Scholar] [CrossRef]
- Tsun, Z. Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D. M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 2013, 52(4), 495–505. [Google Scholar] [CrossRef] [PubMed]
- Nardone, C.; Palanski, B. A.; Scott, D. C.; Timms, R. T.; Barber, K. W.; Gu, X.; Mao, A.; Leng, Y.; Watson, E. V.; Schulman, B. A.; Cole, P. A.; Elledge, S. J. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Molecular Cell 2023, 83(1), 57–73.e9. [Google Scholar] [CrossRef]
- Malik, N.; Ferreira, B. I.; Hollstein, P. E.; Curtis, S. D.; Trefts, E.; Weiser Novak, S.; Yu, J.; Gilson, R.; Hellberg, K.; Fang, L.; Sheridan, A.; Hah, N.; Shadel, G. S.; Manor, U.; Shaw, R. J. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023, 380(6642), eabj5559. [Google Scholar] [CrossRef]
- Mansueto, G.; Armani, A.; Viscomi, C.; D’Orsi, L.; De Cegli, R.; Polishchuk, E. V.; Lamperti, C.; Di Meo, I.; Romanello, V.; Marchet, S.; Saha, P. K.; Zong, H.; Blaauw, B.; Solagna, F.; Tezze, C.; Grumati, P.; Bonaldo, P.; Pessin, J. E.; Zeviani, M.; Sandri, M.; Ballabio, A. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism 2017, 25(1), 182–196. [Google Scholar] [CrossRef]
- Haq, R.; Shoag, J.; Andreu-Perez, P.; Yokoyama, S.; Edelman, H.; Rowe, Glenn C.; Frederick, Dennie T.; Hurley, Aeron D.; Nellore, A.; Kung, Andrew L.; Wargo, Jennifer A.; Song, Jun S.; Fisher, David E.; Arany, Z.; Widlund, Hans R. Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell 2013, 23(3), 302–315. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, F.; Lim, J.-H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, Clary B.; Granter, Scott R.; Widlund, Hans R.; Spiegelman, Bruce M.; Puigserver, P. PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell 2013, 23(3), 287–301. [Google Scholar] [CrossRef]
- Martina, J. A.; Diab, H. I.; Brady, O. A.; Puertollano, R. TFEB and TFE3 are novel components of the integrated stress response. Embo j 2016, 35(5), 479–95. [Google Scholar] [CrossRef]
- Cinque, L.; De Leonibus, C.; Iavazzo, M.; Krahmer, N.; Intartaglia, D.; Salierno, F. G.; De Cegli, R.; Di Malta, C.; Svelto, M.; Lanzara, C.; Maddaluno, M.; Wanderlingh, L. G.; Huebner, A. K.; Cesana, M.; Bonn, F.; Polishchuk, E.; Hübner, C. A.; Conte, I.; Dikic, I.; Mann, M.; Ballabio, A.; Sacco, F.; Grumati, P.; Settembre, C. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. The EMBO Journal 2020, 39(17), EMBJ2020105696. [Google Scholar] [CrossRef]
- Martina, J. A.; Puertollano, R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. Journal of Biological Chemistry 2018, 293(32), 12525–12534. [Google Scholar] [CrossRef]
- Xu, G.; Chen, H.; Cong, Z.; Zhou, L.; Zhao, N.; Yang, Y.; Li, T.; Liu, X.; Wang, Y.; Li, B. TFE3-mediated lysosomal biogenesis and homeostasis alleviates arsenic-induced lysosomal and immune dysfunction in macrophages. Ecotoxicology and Environmental Safety 2025, 299, 118374. [Google Scholar] [CrossRef] [PubMed]
- Pastore, N.; Brady, O. A.; Diab, H. I.; Martina, J. A.; Sun, L.; Huynh, T.; Lim, J. A.; Zare, H.; Raben, N.; Ballabio, A.; Puertollano, R. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016, 12(8), 1240–58. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Olle, L.; Proano-Perez, E.; Aparicio, C.; Guerrero, M.; Muñoz-Cano, R.; Martin, M. MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway. Frontiers in Immunology 2023, 14, 1154108. [Google Scholar] [CrossRef] [PubMed]
- Ohanna, M.; Giuliano, S.; Bonet, C.; Imbert, V.; Hofman, V.; Zangari, J.; Bille, K.; Robert, C.; Bressac-de Paillerets, B.; Hofman, P.; Rocchi, S.; Peyron, J. F.; Lacour, J. P.; Ballotti, R.; Bertolotto, C. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 2011, 25(12), 1245–61. [Google Scholar] [CrossRef]
- Lapierre, L. R.; De Magalhaes Filho, C. D.; McQuary, P. R.; Chu, C.-C.; Visvikis, O.; Chang, J. T.; Gelino, S.; Ong, B.; Davis, A. E.; Irazoqui, J. E.; Dillin, A.; Hansen, M. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature Communications 2013, 4(1), 2267. [Google Scholar] [CrossRef]
- Condon, K. J.; Sabatini, D. M. Nutrient regulation of mTORC1 at a glance. J Cell Sci 2019, 132, 21. [Google Scholar] [CrossRef]
- Zwakenberg, S.; Westland, D.; van Es, R. M.; Rehmann, H.; Anink, J.; Ciapaite, J.; Bosma, M.; Stelloo, E.; Liv, N.; Sobrevals Alcaraz, P.; Verhoeven-Duif, N. M.; Jans, J. J. M.; Vos, H. R.; Aronica, E.; Zwartkruis, F. J. T. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Molecular Cell 2024, 84(22), 4368–4384.e6. [Google Scholar] [CrossRef]
- Agostini, F.; Agostinis, R.; Medina, D. L.; Bisaglia, M.; Greggio, E.; Plotegher, N. The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Mol Neurobiol 2022, 59(8), 5000–5023. [Google Scholar] [CrossRef]
- Vu, H. N.; Dilshat, R.; Fock, V.; Steingrímsson, E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment Cell & Melanoma Research 2021, 34(1), 13–27. [Google Scholar]
- Oppezzo, A.; Rosselli, F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci 2021, 11(1), 18. [Google Scholar] [CrossRef]
- Udono, T.; Yasumoto, K.-i.; Takeda, K.; Amae, S.; Watanabe, K.-i.; Saito, H.; Fuse, N.; Tachibana, M.; Takahashi, K.; Tamai, M. Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 2000, 1491(1-3), 205–219. [Google Scholar] [CrossRef]
- Amae, S.; Fuse, N.; Yasumoto, K.-i.; Sato, S.; Yajima, I.; Yamamoto, H.; Udono, T.; Durlu, Y. K.; Tamai, M.; Takahashi, K. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochemical and biophysical research communications 1998, 247(3), 710–715. [Google Scholar] [CrossRef]
- Maruotti, J.; Thein, T.; Zack, D. J.; Esumi, N. MITF-M, a “melanocyte-specific” isoform, is expressed in the adult retinal pigment epithelium. Pigment cell & melanoma research 2012, 25(5), 641. [Google Scholar]
- Flesher, J. L.; Paterson-Coleman, E. K.; Vasudeva, P.; Ruiz-Vega, R.; Marshall, M.; Pearlman, E.; MacGregor, G. R.; Neumann, J.; Ganesan, A. K. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020, 33(2), 279–292. [Google Scholar] [CrossRef]
- Goding, C. R.; Arnheiter, H. MITF—the first 25 years. Genes & development 2019, 33(15-16), 983–1007. [Google Scholar]
- Watanabe, A.; Takeda, K.; Ploplis, B.; Tachibana, M. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 1998, 18(3), 283–6. [Google Scholar] [CrossRef]
- Potterf, S. B.; Furumura, M.; Dunn, K. J.; Arnheiter, H.; Pavan, W. J. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000, 107(1), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.; Epstein, J. A. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 2003, 12(8), 937–45. [Google Scholar] [CrossRef]
- Goodall, J.; Carreira, S.; Denat, L.; Kobi, D.; Davidson, I.; Nuciforo, P.; Sturm, R. A.; Larue, L.; Goding, C. R. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 2008, 68(19), 7788–94. [Google Scholar] [CrossRef] [PubMed]
- Faião-Flores, F.; Alves-Fernandes, D. K.; Pennacchi, P. C.; Sandri, S.; Vicente, A. L. S. A.; Scapulatempo-Neto, C.; Vazquez, V. L.; Reis, R. M.; Chauhan, J.; Goding, C. R.; Smalley, K. S.; Maria-Engler, S. S. Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells. Oncogene 2017, 36(13), 1849–1861. [Google Scholar] [CrossRef]
- Shibahara, S.; Takeda, K.; Yasumoto, K.-i.; Udono, T.; Watanabe, K.-i.; Saito, H.; Takahashi, K. Microphthalmia-Associated Transcription Factor (MITF): Multiplicity in Structure, Function, and Regulation. Journal of Investigative Dermatology Symposium Proceedings 2001, 6(1), 99–104. [Google Scholar] [CrossRef]
- Huber, W. E.; Price, E. R.; Widlund, H. R.; Du, J.; Davis, I. J.; Wegner, M.; Fisher, D. E. A Tissue-restricted cAMP Transcriptional Response: SOX10 MODULATES α-MELANOCYTE-STIMULATING HORMONE-TRIGGERED EXPRESSION OF MICROPHTHALMIA-ASSOCIATED TRANSCRIPTION FACTOR IN MELANOCYTES *. Journal of Biological Chemistry 2003, 278(46), 45224–45230. [Google Scholar] [CrossRef]
- Ngeow, K. C.; Friedrichsen, H. J.; Li, L.; Zeng, Z.; Andrews, S.; Volpon, L.; Brunsdon, H.; Berridge, G.; Picaud, S.; Fischer, R.; Lisle, R.; Knapp, S.; Filippakopoulos, P.; Knowles, H.; Steingrímsson, E.; Borden, K. L. B.; Patton, E. E.; Goding, C. R. BRAF/MAPK and GSK3 signaling converges to control MITF nuclear export. Proc Natl Acad Sci U S A 2018, 115(37), E8668–e8677. [Google Scholar] [CrossRef]
- Estrada, C.; Mirabal-Ortega, L.; Méry, L.; Dingli, F.; Besse, L.; Messaoudi, C.; Loew, D.; Pouponnot, C.; Bertolotto, C.; Eychène, A.; Druillennec, S. MITF activity is regulated by a direct interaction with RAF proteins in melanoma cells. Communications Biology 2022, 5(1), 101. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Arnheiter, H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res 2005, 18(4), 265–77. [Google Scholar] [CrossRef] [PubMed]
- Miller, A. J.; Levy, C.; Davis, I. J.; Razin, E.; Fisher, D. E. Sumoylation of MITF and its related family members TFE3 and TFEB. J Biol Chem 2005, 280(1), 146–55. [Google Scholar] [CrossRef]
- Louphrasitthiphol, P.; Loffreda, A.; Pogenberg, V.; Picaud, S.; Schepsky, A.; Friedrichsen, H.; Zeng, Z.; Lashgari, A.; Thomas, B.; Patton, E. E.; Wilmanns, M.; Filippakopoulos, P.; Lambert, J.-P.; Steingrímsson, E.; Mazza, D.; Goding, C. R. Acetylation reprograms MITF target selectivity and residence time. Nature Communications 2023, 14(1), 6051. [Google Scholar] [CrossRef] [PubMed]
- Doronzo, G.; Astanina, E.; Bussolino, F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021, 12, 640061. [Google Scholar]
- Kuiper, R. P.; Schepens, M.; Thijssen, J.; Schoenmakers, E. F. P. M.; van Kessel, A. G. Regulation of the MiTF/TFE bHLH-LZ transcription factors through restricted spatial expression and alternative splicing of functional domains. Nucleic Acids Research 2004, 32(8), 2315–2322. [Google Scholar] [CrossRef]
- Tsunemi, T.; Ashe, T. D.; Morrison, B. E.; Soriano, K. R.; Au, J.; Roque, R. A. V.; Lazarowski, E. R.; Damian, V. A.; Masliah, E.; La Spada, A. R. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science translational medicine 2012, 4(142), 142ra97–142ra97. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, Q.; Li, M.; Shao, F.; Ding, W.-X.; Lira, V. A.; Chen, S. X.; Sebag, S. C.; Hotamisligil, G. S.; Cao, H. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 2021, 17(8), 1841–1855. [Google Scholar] [CrossRef]
- Ghosh, A.; Jana, M.; Modi, K.; Gonzalez, F. J.; Sims, K. B.; Berry-Kravis, E.; Pahan, K. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem 2015, 290(16), 10309–24. [Google Scholar] [CrossRef]
- Suzuki, N.; Johmura, Y.; Wang, T.-W.; Migita, T.; Wu, W.; Noguchi, R.; Yamaguchi, K.; Furukawa, Y.; Nakamura, S.; Miyoshi, I. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy 2021, 17(11), 3776–3793. [Google Scholar] [CrossRef]
- Annunziata, I.; van de Vlekkert, D.; Wolf, E.; Finkelstein, D.; Neale, G.; Machado, E.; Mosca, R.; Campos, Y.; Tillman, H.; Roussel, M. F.; Andrew Weesner, J.; Ellen Fremuth, L.; Qiu, X.; Han, M.-J.; Grosveld, G. C.; d’Azzo, A. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nature Communications 2019, 10(1), 3623. [Google Scholar] [CrossRef]
- Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P. K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Jürgen Klisch, T.; Wollenberg, A. C.; Di Bernardo, D.; Chan, L.; Irazoqui, J. E.; Ballabio, A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature Cell Biology 2013, 15(6), 647–658. [Google Scholar] [CrossRef]
- Settembre, C.; Zoncu, R.; Medina, D. L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M. C. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal 2012, 31(5), 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Roczniak-Ferguson, A.; Petit, C. S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T. C.; Ferguson, S. M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012, 5(228), ra42. [Google Scholar] [CrossRef] [PubMed]
- Martina, J. A.; Chen, Y.; Gucek, M.; Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8(6), 903–14. [Google Scholar] [CrossRef]
- Takla, M.; Keshri, S.; Rubinsztein, D. C. The post-translational regulation of transcription factor EB (TFEB) in health and disease. EMBO reports 2023, 24(11), e57574. [Google Scholar] [CrossRef]
- Chen, H.; Gong, S.; Zhang, H.; Chen, Y.; Liu, Y.; Hao, J.; Liu, H.; Li, X. From the regulatory mechanism of TFEB to its therapeutic implications. Cell Death Discovery 2024, 10(1), 84. [Google Scholar] [CrossRef] [PubMed]
- Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy 2017, 13(3), 464–472. [Google Scholar] [CrossRef]
- Dibble, C. C.; Cantley, L. C. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015, 25(9), 545–55. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, X.; Pan, Z.; Dokudovskaya, S. mTOR signaling networks: mechanistic insights and translational frontiers in disease therapeutics. Signal Transduction and Targeted Therapy 2025, 10(1), 428. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014, 6(1). [Google Scholar] [CrossRef]
- Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002, 4(9), 648–57. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Z.; Erdjument-Bromage, H.; Tempst, P.; Pandolfi, P. P. Phosphorylation and Functional Inactivation of TSC2 by Erk: Implications for Tuberous Sclerosisand Cancer Pathogenesis. Cell 2005, 121(2), 179–193. [Google Scholar] [CrossRef]
- Mendoza, M. C.; Er, E. E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011, 36(6), 320–8. [Google Scholar] [CrossRef]
- Dibble, C. C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J. M.; Finan, P. M.; Kwiatkowski, D. J.; Murphy, L. O.; Manning, B. D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012, 47(4), 535–46. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, U.; Prentzell, M. T.; Cadena Sandoval, M.; Heberle, A. M.; Henske, E. P.; Opitz, C. A.; Thedieck, K. The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Front Cell Dev Biol 2021, 9, 751892. [Google Scholar] [CrossRef]
- Huang, J.; Dibble, C. C.; Matsuzaki, M.; Manning, B. D. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008, 28(12), 4104–15. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, Y.; Ioi, Y.; Araki, M.; Kontani, K.; Maki, M.; Shibata, H.; Takahara, T. Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding. Journal of Biological Chemistry 2025, 301(2), 108122. [Google Scholar] [CrossRef] [PubMed]
- Sancak, Y.; Peterson, T. R.; Shaul, Y. D.; Lindquist, R. A.; Thoreen, C. C.; Bar-Peled, L.; Sabatini, D. M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320(5882), 1496–501. [Google Scholar] [CrossRef] [PubMed]
- Peña-Llopis, S.; Vega-Rubin-de-Celis, S.; Schwartz, J. C.; Wolff, N. C.; Tran, T. A.; Zou, L.; Xie, X. J.; Corey, D. R.; Brugarolas, J. Regulation of TFEB and V-ATPases by mTORC1. Embo j 2011, 30(16), 3242–58. [Google Scholar] [CrossRef]
- Ratto, E.; Chowdhury, S. R.; Siefert, N. S.; Schneider, M.; Wittmann, M.; Helm, D.; Palm, W. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nature Communications 2022, 13(1), 4848. [Google Scholar] [CrossRef]
- Sahu, U.; Ben-Sahra, I. GATOR2 rings GATOR1 to speak to mTORC1. Mol Cell 2023, 83(1), 6–8. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, R. L.; Chantranupong, L.; Saxton, R. A.; Shen, K.; Scaria, S. M.; Cantor, J. R.; Sabatini, D. M. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016, 351(6268), 43–8. [Google Scholar] [CrossRef]
- Chantranupong, L.; Scaria, S. M.; Saxton, R. A.; Gygi, M. P.; Shen, K.; Wyant, G. A.; Wang, T.; Harper, J. W.; Gygi, S. P.; Sabatini, D. M. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell 2016, 165(1), 153–164. [Google Scholar] [CrossRef]
- Gu, X.; Orozco, J. M.; Saxton, R. A.; Condon, K. J.; Liu, G. Y.; Krawczyk, P. A.; Scaria, S. M.; Harper, J. W.; Gygi, S. P.; Sabatini, D. M. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 2017, 358(6364), 813–818. [Google Scholar] [CrossRef]
- Wang, S.; Tsun, Z.-Y.; Wolfson, R. L.; Shen, K.; Wyant, G. A.; Plovanich, M. E.; Yuan, E. D.; Jones, T. D.; Chantranupong, L.; Comb, W.; Wang, T.; Bar-Peled, L.; Zoncu, R.; Straub, C.; Kim, C.; Park, J.; Sabatini, B. L.; Sabatini, D. M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347(6218), 188–194. [Google Scholar] [CrossRef]
- Rebsamen, M.; Pochini, L.; Stasyk, T.; de Araújo, M. E. G.; Galluccio, M.; Kandasamy, R. K.; Snijder, B.; Fauster, A.; Rudashevskaya, E. L.; Bruckner, M.; Scorzoni, S.; Filipek, P. A.; Huber, K. V. M.; Bigenzahn, J. W.; Heinz, L. X.; Kraft, C.; Bennett, K. L.; Indiveri, C.; Huber, L. A.; Superti-Furga, G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519(7544), 477–481. [Google Scholar] [CrossRef]
- Leprivier, G.; Rotblat, B. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Abuammar, H.; Juhász, G. Lysosomal activity depends on TRPML1-mediated Ca(2+) release coupled to incoming vesicle fusions. J Biol Chem 2024, 300(12), 107911. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Y.; Zhong, X. Z.; Cao, Q.; Zhu, X. H.; Zhu, X.; Dong, X. P. A negative feedback regulation of MTORC1 activity by the lysosomal Ca(2+) channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy 2018, 14(1), 38–52. [Google Scholar] [CrossRef]
- Puck, J. M.; Stewart, C. C.; Henthorn, P. S. A high-frequency RFLP at the human TFE3 locus on the X chromosome. Nucleic Acids Res 1991, 19(3), 684. [Google Scholar] [CrossRef]
- Contreras, P. S.; Martina, J. A.; Rollins, K.; Jeong, E.; Rissone, A.; Puertollano, R. Differential contribution of TFE3 isoforms to cell motility and invasion. EMBO Rep 2026, 27(2), 471–500. [Google Scholar] [CrossRef]
- Puertollano, R.; Ferguson, S. M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. Embo j 2018, 37, 11. [Google Scholar] [CrossRef]
- Huan, C.; Kelly, M. L.; Steele, R.; Shapira, I.; Gottesman, S. R.; Roman, C. A. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 2006, 7(10), 1082–91. [Google Scholar] [CrossRef]
- Raben, N.; Puertollano, R. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress. Annu Rev Cell Dev Biol 2016, 32, 255–278. [Google Scholar] [CrossRef]
- Taniguchi, M.; Nadanaka, S.; Tanakura, S.; Sawaguchi, S.; Midori, S.; Kawai, Y.; Yamaguchi, S.; Shimada, Y.; Nakamura, Y.; Matsumura, Y.; Fujita, N.; Araki, N.; Yamamoto, M.; Oku, M.; Wakabayashi, S.; Kitagawa, H.; Yoshida, H. TFE3 is a bHLH-ZIP-type transcription factor that regulates the mammalian Golgi stress response. Cell Struct Funct 2015, 40(1), 13–30. [Google Scholar] [CrossRef]
- Cinque, L.; De Leonibus, C.; Iavazzo, M.; Krahmer, N.; Intartaglia, D.; Salierno, F. G.; De Cegli, R.; Di Malta, C.; Svelto, M.; Lanzara, C.; Maddaluno, M.; Wanderlingh, L. G.; Huebner, A. K.; Cesana, M.; Bonn, F.; Polishchuk, E.; Hübner, C. A.; Conte, I.; Dikic, I.; Mann, M.; Ballabio, A.; Sacco, F.; Grumati, P.; Settembre, C. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. Embo j 2020, 39(17), e105696. [Google Scholar] [CrossRef]
- McGuinness, W.; Ryan, B.; Guardado, C. L.; Carling, P.; Vallin, B.; Caiazza, M. C.; Heon-Roberts, R.; Kilfeather, P.; Wantling, J.; Hoffmann, J.; Aird, D.; Lofstromm, K.; Zhang, M.; Cowley, S. A.; Hirst, W. D.; Wade-Martins, R. TFEB and TFE3 have cell-type specific expression in the brain and divergent roles in neurons. bioRxiv 2025, 2025.04.22.649949. [Google Scholar] [CrossRef]
- Zhao, G.-Q.; Zhao, Q.; Zhou, X.; Mattei, M.-G.; de Crombrugghe, B. TFEC, a Basic Helix-Loop-Helix Protein, Forms Heterodimers with TFE3 and Inhibits TFE3-Dependent Transcription Activation. Molecular and Cellular Biology 1993, 13(8), 4505–4512. [Google Scholar]
- Rehli, M.; Lichanska, A.; Cassady, A. I.; Ostrowski, M. C.; Hume, D. A. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. The Journal of Immunology 1999, 162(3), 1559–1565. [Google Scholar] [CrossRef]
- Rehli, M.; Sulzbacher, S.; Pape, S.; Ravasi, T.; Wells, C. A.; Heinz, S.; Söllner, L.; El Chartouni, C.; Krause, S. W.; Steingrimsson, E. Transcription factor Tfec contributes to the IL-4-inducible expression of a small group of genes in mouse macrophages including the granulocyte colony-stimulating factor receptor. The Journal of Immunology 2005, 174(11), 7111–7122. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Zhang, L.; Zhang, Z.; He, L.; Mou, Y.; Deng, Y.; Cao, Y.; Yang, P.; Su, Y. Role of C/EBP homologous protein and endoplasmic reticulum stress in asthma exacerbation by regulating the IL-4/signal transducer and activator of transcription 6/transcription factor EC/IL-4 receptor α positive feedback loop in M2 macrophages. Journal of Allergy and Clinical Immunology 2017, 140(6), 1550–1561. e8. [Google Scholar] [CrossRef]
- Kim, S.; Song, H.-S.; Yu, J.; Kim, Y.-M. MiT Family Transcriptional Factors in Immune Cell Functions. Molecules and Cells 2021, 44(5), 342–355. [Google Scholar] [CrossRef]
- Li, W.; Qin, X.; Wang, B.; Xu, G.; Zhang, J.; Jiang, X.; Chen, C.; Qiu, F.; Zou, Z. MiTF is Associated with Chemoresistance to Cisplatin in A549 Lung Cancer Cells via Modulating Lysosomal Biogenesis and Autophagy. Cancer Manag Res 2020, 12, 6563–6573. [Google Scholar] [CrossRef]
- Hsiao, Y. J.; Chang, W. H.; Chen, H. Y.; Hsu, Y. C.; Chiu, S. C.; Chiang, C. C.; Chang, G. C.; Chen, Y. J.; Wang, C. Y.; Chen, Y. M.; Lin, C. Y.; Chen, Y. J.; Yang, P. C.; Chen, J. J. W.; Yu, S. L. MITF functions as a tumor suppressor in non-small cell lung cancer beyond the canonically oncogenic role. Aging (Albany NY) 2020, 13(1), 646–674. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Kalamida, D.; Sivridis, E.; Karagounis, I. V.; Gatter, K. C.; Harris, A. L.; Koukourakis, M. I. Increased expression of transcription factor EB (TFEB) is associated with autophagy, migratory phenotype and poor prognosis in non-small cell lung cancer. Lung Cancer 2015, 90(1), 98–105. [Google Scholar] [CrossRef]
- Zhao, L.-P.; Wang, H.-J.; Hu, D.; Hu, J.-H.; Guan, Z.-R.; Yu, L.-H.; Jiang, Y.-P.; Tang, X.-Q.; Zhou, Z.-H.; Xie, T.; Lou, J.-S. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. Journal of Advanced Research 2024, 62, 257–272. [Google Scholar] [CrossRef]
- Kundu, S. T.; Grzeskowiak, C. L.; Fradette, J. J.; Gibson, L. A.; Rodriguez, L. B.; Creighton, C. J.; Scott, K. L.; Gibbons, D. L. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nature Communications 2018, 9(1), 2731. [Google Scholar] [CrossRef]
- Akman, M.; Monteleone, C.; Doronzo, G.; Godel, M.; Napoli, F.; Merlini, A.; Campani, V.; Nele, V.; Balmas, E.; Chontorotzea, T.; Fontana, S.; Digiovanni, S.; Barbu, F. A.; Astanina, E.; Jafari, N.; Salaroglio, I. C.; Kopecka, J.; De Rosa, G.; Mohr, T.; Bertero, A.; Righi, L.; Novello, S.; Scagliotti, G. V.; Bussolino, F.; Riganti, C. TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer. J Exp Clin Cancer Res 2024, 43(1), 219. [Google Scholar] [CrossRef]
- Miao, B.; Zhang, C.; Stroh, N.; Brenner, L.; Hufnagel, K.; Hoheisel, J. D.; Bandapalli, O. R. Transcription factor TFE3 enhances cell cycle and cancer progression by binding to the hTERT promoter. Cancer Commun (Lond) 2021, 41(12), 1423–1426. [Google Scholar] [CrossRef]
- Agaimy, A.; Stoehr, R.; Michal, M.; Christopoulos, P.; Winter, H.; Zhang, L.; Stenzinger, A.; Michal, M.; Mechtersheimer, G.; Antonescu, C. R. Recurrent YAP1-TFE3 Gene Fusions in Clear Cell Stromal Tumor of the Lung. The American Journal of Surgical Pathology 2021, 45(11), 1541–1549. [Google Scholar] [CrossRef]
- MacDonald, W.; Avenarius, M. R.; Aziz, J.; Guo, A.; D’Souza, D. M.; Satturwar, S.; Shilo, K. Perivascular Epithelioid Cell Tumor of the Lung With a Novel YAP1:: TFE3 Fusion. International Journal of Surgical Pathology 2025, 10668969251323936. [CrossRef]
- Antonescu, C. R.; Le Loarer, F.; Mosquera, J.-M.; Sboner, A.; Zhang, L.; Chen, C.-L.; Chen, H.-W.; Pathan, N.; Krausz, T.; Dickson, B. C.; Weinreb, I.; Rubin, M. A.; Hameed, M.; Fletcher, C. D. M. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes, Chromosomes and Cancer 2013, 52(8), 775–784. [Google Scholar] [CrossRef]
- Zhao, M.; Rao, Q.; Wu, C.; Zhao, Z.; He, X.; Ru, G. Alveolar soft part sarcoma of lung: report of a unique case with emphasis on diagnostic utility of molecular genetic analysis for TFE3 gene rearrangement and immunohistochemistry for TFE3 antigen expression. Diagnostic pathology 2015, 10(1), 160. [Google Scholar] [CrossRef]
- Schumacher, T.; Ameline, B.; Vogetseder, A.; Bode, B.; Svantesson, T. An epithelioid hemangioendothelioma with a novel RREB1:: TFE3 gene fusion. Virchows Archiv 2025, 1–5. [CrossRef]
- Sun, X.; Dai, Y.; He, J.; Li, H.; Yang, X.; Dong, W.; Xie, X.; Wang, M.; Xu, Y.; Lv, L. D-mannose induces TFE3-dependent lysosomal degradation of EGFR and inhibits the progression of NSCLC. Oncogene 2023, 42(47), 3503–3513. [Google Scholar] [CrossRef]
- Theofani, E.; Semitekolou, M.; Samitas, K.; Mais, A.; Galani, I. E.; Triantafyllia, V.; Lama, J.; Morianos, I.; Stavropoulos, A.; Jeong, S. J.; Andreakos, E.; Razani, B.; Rovina, N.; Xanthou, G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022, 77(7), 2131–2146. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, Y.; Wang, J.; Zhang, M.; Di, C.; Wu, Y.; Wu, Q.; Su, W.; Cheng, J.; Lv, J.; Wu, M.; Xia, Z. Transcription Factor EB SUMOylation in Airway Epithelial Cells Impairs Lysosomal Biogenesis to Promote Asthma Development. Am J Respir Cell Mol Biol 2025, 73(3), 451–465. [Google Scholar] [CrossRef]
- Xiang, J.; Liu, B.; Li, Y.; Ren, Y.; Li, Y.; Zhou, M.; Yu, J.; Luo, Z.; Liu, E.; Fu, Z.; Ding, F. TFEB regulates dendritic cell antigen presentation to modulate immune balance in asthma. Respir Res 2024, 25(1), 182. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, P.; Yan, G.; Sun, A.; Xu, L.; Li, J.; Zhai, X.; Liu, X.; Mei, T.; Xuan, Y.; Nie, Y. Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells. Respir Res 2025, 26(1), 50. [Google Scholar] [CrossRef]
- Govindaraju, V. K.; Bodas, M.; Vij, N. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 2017, 12(8), e0182420. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Dong, R.; Feng, Y.; Zhou, M. Therapeutic potential of BLT1 antagonist for COPD: involvement of inducing autophagy and ameliorating inflammation. Drug Des Devel Ther 2019, 13, 3105–3116. [Google Scholar] [CrossRef]
- Sul, O. J.; Choi, H. W.; Oh, J.; Ra, S. W. GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway. Food Chem Toxicol 2023, 177, 113795. [Google Scholar] [CrossRef]
- Schmidt, L. S.; Linehan, W. M. Molecular genetics and clinical features of Birt-Hogg-Dubé syndrome. Nat Rev Urol 2015, 12(10), 558–69. [Google Scholar] [CrossRef]
- Dal Sasso, A. A.; Belém, L. C.; Zanetti, G.; Souza, C. A.; Escuissato, D. L.; Irion, K. L.; Guimarães, M. D.; Marchiori, E. Birt-Hogg-Dubé syndrome. State-of-the-art review with emphasis on pulmonary involvement. Respir Med 2015, 109(3), 289–96. [Google Scholar] [CrossRef]
- Hong, S. B.; Oh, H.; Valera, V. A.; Baba, M.; Schmidt, L. S.; Linehan, W. M. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 2010, 5(12), e15793. [Google Scholar] [CrossRef]
- Chu, L.; Luo, Y.; Chen, H.; Miao, Q.; Wang, L.; Moats, R.; Wang, T.; Kennedy, J. C.; Henske, E. P.; Shi, W. Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax 2020, 75(6), 486–493. [Google Scholar] [CrossRef]
- Kennedy, J. C.; Khabibullin, D.; Hougard, T.; Nijmeh, J.; Shi, W.; Henske, E. P. Loss of FLCN inhibits canonical WNT signaling via TFE3. Hum Mol Genet 2019, 28(19), 3270–3281. [Google Scholar] [CrossRef]
- Huang, J.; Xu, W.; Liu, P.; Liu, Y.; Shen, C.; Liu, S.; Wang, Y.; Wang, J.; Zhang, T.; He, Y.; Cheng, C.; Yang, L.; Zhang, W.; Tian, X.; Xu, K. F. Gene mutations in sporadic lymphangioleiomyomatosis and genotype-phenotype correlation analysis. BMC Pulm Med 2022, 22(1), 354. [Google Scholar] [CrossRef]
- Steagall, W. K.; Zhang, L.; Cai, X.; Pacheco-Rodriguez, G.; Moss, J. Genetic heterogeneity of circulating cells from patients with lymphangioleiomyomatosis with and without lung transplantation. Am J Respir Crit Care Med 2015, 191(7), 854–6. [Google Scholar] [CrossRef]
- Sato, T.; Seyama, K.; Fujii, H.; Maruyama, H.; Setoguchi, Y.; Iwakami, S.; Fukuchi, Y.; Hino, O. Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 2002, 47(1), 20–8. [Google Scholar] [CrossRef]
- Muzykewicz, D. A.; Sharma, A.; Muse, V.; Numis, A. L.; Rajagopal, J.; Thiele, E. A. TSC1 and TSC2 mutations in patients with lymphangioleiomyomatosis and tuberous sclerosis complex. Journal of Medical Genetics 2009, 46(7), 465. [Google Scholar]
- Prizant, H.; Hammes, S. R. Minireview: Lymphangioleiomyomatosis (LAM): The “Other” Steroid-Sensitive Cancer. Endocrinology 2016, 157(9), 3374–83. [Google Scholar] [CrossRef]
- Constantin, A.-A.; Gaburici, A. D.; Malaescu, A. N.; Iorga, A.-L.; Dragosloveanu, C. D. M.; Poenaru, M.-O.; Gorecki, G.-P.; Amza, M.; Georgescu, M.-T.; Dragomir, R.-E.; Popescu, M.; Sima, R.-M. Lymphangioleiomyomatosis and Pregnancy—Do We Have All the Answers for a Woman Who Desires to Conceive?—Literature Review. Cancers 2025, 17(2), 323. [Google Scholar] [CrossRef]
- AlHarthi, M.; Hawari, M. A successful pregnancy in advanced lymphangioleiomyomatosis: A case report and review of pregnancy management in LAM. International Journal of Gynecology & Obstetrics. n/a, (n/a).. [CrossRef]
- Zak, S.; Mokhallati, N.; Su, W.; McCormack, F. X.; Franz, D. N.; Mays, M.; Krueger, D. A.; Szczesniak, R. D.; Gupta, N. Lymphangioleiomyomatosis Mortality in Patients with Tuberous Sclerosis Complex. Ann Am Thorac Soc 2019, 16(4), 509–512. [Google Scholar] [CrossRef]
- McCormack, F. X.; Inoue, Y.; Moss, J.; Singer, L. G.; Strange, C.; Nakata, K.; Barker, A. F.; Chapman, J. T.; Brantly, M. L.; Stocks, J. M. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. New England Journal of Medicine 2011, 364(17), 1595–1606. [Google Scholar] [CrossRef]
- Revilla-López, E.; Berastegui, C.; Méndez, A.; Sáez-Giménez, B.; Ruiz de Miguel, V.; López-Meseguer, M.; Monforte, V.; Bravo, C.; Pujana, M. A.; Ramon, M. A.; Gómez-Ollés, S.; Roman, A.; Bello, I.; Burgos, R.; Escobar, R.; Ferrándiz-Pulido, C.; Gómez, A.; Pallisa, E.; Palomares, G.; Salicrú, S.; Sánchez Martínez, A. L.; Sansano, I.; Sellarés, J. The Vall d’Hebron Multidisciplinary Cystic Lung Disease, G., Long-term results of sirolimus treatment in lymphangioleiomyomatosis: a single referral centre experience. Scientific Reports 2021, 11(1), 10171. [Google Scholar] [CrossRef]
- Dilling, D. F.; Nair, A.; Gries, C. J.; Leard, L. E.; Fisher, A. J.; Johnson, S. R.; McCormack, F. X. Use of Sirolimus in Patients with Lymphangioleiomyomatosis (LAM) on Waiting Lists for Lung Transplant (LTX). The Journal of Heart and Lung Transplantation 2018, 37(4), S457. [Google Scholar] [CrossRef]
- Alesi, N.; Khabibullin, D.; Rosenthal, D. M.; Akl, E. W.; Cory, P. M.; Alchoueiry, M.; Salem, S.; Daou, M.; Gibbons, W. F.; Chen, J. A.; Zhang, L.; Filippakis, H.; Graciotti, L.; Miceli, C.; Monfregola, J.; Vilardo, C.; Morroni, M.; Di Malta, C.; Napolitano, G.; Ballabio, A.; Henske, E. P. TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex. Nat Commun 2024, 15(1), 406. [Google Scholar] [CrossRef]
- Du, Y.; Guo, M.; Wu, Y.; Wagner, A.; Perl, A. K.; Wikenheiser-Brokamp, K.; Yu, J.; Gupta, N.; Kopras, E.; Krymskaya, V.; Obraztsova, K.; Tang, Y.; Kwiatkowski, D.; Henske, E. P.; McCormack, F.; Xu, Y. Lymphangioleiomyomatosis (LAM) Cell Atlas. Thorax 2023, 78(1), 85–87. [Google Scholar] [CrossRef]
- Koc-Gunel, S.; Liu, E. C.; Gautam, L. K.; Calvert, B. A.; Murthy, S.; Harriott, N. C.; Nawroth, J. C.; Zhou, B.; Krymskaya, V. P.; Ryan, A. L. Targeting fibroblast–endothelial cell interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics. JCI Insight 2025, 10(6). [Google Scholar] [CrossRef]
- Liu, H. J.; Diesler, R.; Chami, J.; Wu, B.; Du, H.; Jin, Y.; Daou, M.; Alesi, N.; Khabibullin, D.; Leroux, C.; Cottin, V.; Cantley, L. G.; Rudloff, U.; Henske, E. P. Modulation of infiltrating CD206(+) macrophages restricts progression of pulmonary lymphangioleiomyomatosis. Eur Respir J 2025, 66(5). [Google Scholar] [CrossRef]
- Chen, K.; Zhao, S.; Guo, M.; Reza, H.; Wagner, A.; Cakar, A. C.; Jiang, C.; Zhang, E.; Green, J.; Martin, E.; Wikenheiser-Brokamp, K.; Perl, A. K.; Sinner, D.; Yu, J.; Xu, Y. Decoding Lymphangioleiomyomatosis (LAM) Niche Environment via Integrative Analysis of Single Cell Multiomics and Spatial Transcriptomics. bioRxiv 2025, 2025.07.07.663390. [Google Scholar] [CrossRef]
- Jezela-Stanek, A.; Chorostowska-Wynimko, J.; Tylki-Szymańska, A. Pulmonary involvement in selected lysosomal storage diseases and the impact of enzyme replacement therapy: A state-of-the art review. Clin Respir J 2020, 14(5), 422–429. [Google Scholar] [CrossRef]
- Montanari, C.; Tagi, V. M.; D’Auria, E.; Guaia, V.; Di Gallo, A.; Ghezzi, M.; Verduci, E.; Fiori, L.; Zuccotti, G. Lung Diseases and Rare Disorders: Is It a Lysosomal Storage Disease? Differential Diagnosis, Pathogenetic Mechanisms and Management. Children 2024, 11(6), 668. [Google Scholar] [CrossRef]
- Gülhan, B.; Ozçelik, U.; Gürakan, F.; Güçer, S.; Orhan, D.; Cinel, G.; Yalçin, E.; Ersöz, D. D.; Kiper, N.; Yüce, A.; Kale, G. Different features of lung involvement in Niemann-Pick disease and Gaucher disease. Respir Med 2012, 106(9), 1278–85. [Google Scholar] [CrossRef]
- von Ranke, F. M.; Pereira Freitas, H. M.; Mançano, A. D.; Rodrigues, R. S.; Hochhegger, B.; Escuissato, D.; Araujo Neto, C. A.; da Silva, T. K.; Marchiori, E. Pulmonary Involvement in Niemann-Pick Disease: A State-of-the-Art Review. Lung 2016, 194(4), 511–8. [Google Scholar] [CrossRef]
- Narayanan, S.; Catherman, K.; Pajor, N.; McCormack, F. X. Pulmonary Manifestations of Lysosomal Storage Disorders in Adults. Clinics in Chest Medicine 2025, 46(4), 739–753. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Chen, H.; Pan, Z.; Zhao, M.; Cheng, S.; Luo, Y.; Zhang, W.; Li, D. Small-molecule Activation of TFEB Alleviates Niemann-Pick Disease Type C via Promoting Lysosomal Exocytosis and Biogenesis; eLife Sciences Publications, Ltd; 2025. [Google Scholar]
- Liu, W.; Li, C.-C.; Lu, X.; Bo, L.-Y.; Jin, F.-G. Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chinese Medical Journal 2019, 132(11), 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, S.; Li, C.; Ban, J.; Wei, Y.; He, Y.; Liu, F.; Chen, Y.; Chen, J. Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages. Cells 2020, 9(1). [Google Scholar] [CrossRef]
- Rodrigues, R.; Olivo, C. R.; Lourenço, J. D.; Riane, A.; Cervilha, D. A. B.; Ito, J. T.; Martins, M. A.; Lopes, F. A murine model of elastase- and cigarette smoke-induced emphysema. J Bras Pneumol 2017, 43(2), 95–100. [Google Scholar] [CrossRef]
- Hidvegi, T.; Stolz, D. B.; Alcorn, J. F.; Yousem, S. A.; Wang, J.; Leme, A. S.; Houghton, A. M.; Hale, P.; Ewing, M.; Cai, H.; Garchar, E. A.; Pastore, N.; Annunziata, P.; Kaminski, N.; Pilewski, J.; Shapiro, S. D.; Pak, S. C.; Silverman, G. A.; Brunetti-Pierri, N.; Perlmutter, D. H. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy. J Biol Chem 2015, 290(50), 29742–57. [Google Scholar] [CrossRef]
- Martina, J. A.; Puertollano, R. TFEB and TFE3: The art of multi-tasking under stress conditions. Transcription 2017, 8(1), 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, X.; Hui, Y.; Dong, B.; Gong, J.; Zhao, Y.; Ji, H.; Qiu, Y.; Jiang, S.; Guo, D.; Gao, X. TFEB orchestrates ferritinophagy and ferroptosis in ionophore drug-induced hepatotoxicity: unveiling a novel therapeutic avenue. Free Radic Biol Med 2025, 236, 116–133. [Google Scholar] [CrossRef]
- Zoncu, R.; Perera, R. M. Emerging roles of the MiT/TFE factors in cancer. Trends in Cancer 2023, 9(10), 817–827. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
