Submitted:
30 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods and Materials
2.1. CEM Design and Open-Source CAD
2.1.1. Radiation Pattern Calculations
2.1.2. VSWR Calculations
2.2. Fabrication Technique
2.3. Computational Hardware
3. Results
3.1. Radiation Patterns
3.2. The VSWR
3.3. Cross-Polarization Ratios
3.4. Future Work: Expansion of Bandwidth via Scaled Design
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CEM | Computational Electromagnetism |
| HPC | High-Performance Computing |
| LPDA | Log-periodic Dipole Array |
| MEEP | MIT Electromagnetic Equation Propagator |
| NEEC | Naval Engineering Education Consortium |
| NSWC Corona | Naval Surface Warfare Center, Corona Division |
| RF | Radio-frequency |
| PLA | Polylactice Acid |
| PETG | Polyethylene Glycol |
References
- 1. Ansys HFSS: Best-In-Class 3D High Frequency Structure Simulation Software. https://www.ansys.com/products/electronics/ansys-hfss. Accessed: 2025-12-02.
- XFdtd Software for 3D Electromagnetic Simulation. 02 12 2025. Available online: https://www.remcom.com/xfdtd-3d-em-simulation-software.
- Segovia-Guerrero, L.; Baladés, N.; Gallardo-Galán, J.J.; Gil-Mena, A.J.; Sales, D.L. Additive vs. Subtractive Manufacturing: A Comparative Life Cycle and Cost Analyses of Steel Mill Spare Parts. Journal of Manufacturing and Materials Processing 2025, 9, 138. [Google Scholar] [CrossRef]
- Additive Manufacturing vs. Subtractive Manufacturing: A Cost-Benefit Analysis. 02 12 2025. Available online: https://plentifulchoices.com/production-line/additive-manufacturing-cost.
- Gajbhiye, P.A.; Singh, S.P.; Sharma, M.K. A comprehensive review of AI and machine learning techniques in antenna design optimization and measurement. Discover Electronics 2025, 2, 46. [Google Scholar] [CrossRef]
- Goudos, S.K.; Kalialakis, C.; Mittra, R. Evolutionary Algorithms Applied to Antennas and Propagation: A Review of State of the Art. International Journal of Antennas and Propagation 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Linden, D.; Altshuler, E. Evolving wire antennas using genetic algorithms: a review. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware; 1999; pp. 225–232. [Google Scholar] [CrossRef]
- Hanson, J.C. Broadband RF Phased Array Design with MEEP: Comparisons to Array Theory in Two and Three Dimensions. Electronics 2021, 10, 415. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.; Johnson, S.G. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 2010, 181, 687–702. [Google Scholar] [CrossRef]
- MeepCon Broadband RF Phased Array Design with MEEP, MIT. MIT, 2022.
- Alkaraki, S.; Gao, Y. mm-Wave Low-Cost 3D Printed MIMO Antennas With Beam Switching Capabilities for 5G Communication Systems. IEEE Access 2020, 8, 32531–32541. [Google Scholar] [CrossRef]
- Yoo, I.; Gollub, J.; Ye, S.; Gray, A.; Yurduseven, O.; Deshpande, M.D.; Smith, D.R. Hollow Rectangular Waveguide-fed Holographic Beamforming Antenna Additively Manufactured (3D Printed) with Conductive Polymer. arXiv 2022, 2208.14531. [Google Scholar] [CrossRef]
- Yurduseven, O.; Flowers, P.; Ye, S.; Marks, D.L.; Gollub, J.N.; Fromenteze, T.; Wiley, B.J.; Smith, D.R. Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas. IET Microwaves, Antennas & Propagation 2017, 11, 1962–1969. [Google Scholar] [CrossRef]
- Yurduseven, O.; Ye, S.; Fromenteze, T.; Wiley, B.J.; Smith, D.R. 3D Conductive Polymer Printed Metasurface Antenna for Fresnel Focusing. Designs 2019, 3, 46. [Google Scholar] [CrossRef]
- Hammond, A.M.; Oskooi, A.; Chen, M.; Lin, Z.; Johnson, S.G.; Ralph, S.E. High-performance hybrid time/frequency-domain topology optimization for large-scale photonics inverse design. Optics Express 2022, 30, 4467. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact nanophotonic devices designed by computational metamaterials. Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP) 2017, p. IM2E.2. [Google Scholar] [CrossRef]
| 1 | |
| 2 | |
| 3 |









| Parameter | Variable Name | Value [cm] |
|---|---|---|
| Cavity Length | 0.77 | |
| Cavity Width | 1.00 | |
| Surface Length | 16.52 | |
| Opening Width | w | 9.59 |
| Height | z | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
