Submitted:
01 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1. Sulfur Biology as a Foundation of Tissue Integrity
| Biological System | Sulfur-Dependent Component | Molecular Disruption in Diabetes | Cellular Consequence | Tissue/Clinical Outcome |
|---|---|---|---|---|
| Redox homeostasis | Cysteine → Glutathione synthesis via SLC7A11 | Reduced cystine uptake, GSH depletion, ROS accumulation | Oxidative macromolecular damage, redox signaling failure | Persistent oxidative stress, delayed healing |
| Antioxidant defense regulation | Nrf2–KEAP1 thiol-sensitive pathway | Impaired Nrf2 activation and antioxidant gene transcription | Decreased HO-1, NQO1, SOD, catalase expression | Loss of cytoprotection |
| Inflammatory control | Redox modulation of NF-κB | ROS-driven NF-κB hyperactivation | Sustained TNF-α, IL-1β, IL-6 production | Chronic non-resolving inflammation |
| Proteostasis | Disulfide bond formation and ER folding | Misfolded ECM proteins, chronic UPR activation | Apoptosis, reduced fibroblast function | Poor granulation tissue formation |
| ECM structural integrity | Disulfide-stabilized collagen and matrix proteins | Defective cross-linking and structural weakness | Impaired adhesion, migration, mechanotransduction | Fragile matrix, poor wound contraction |
| Mitochondrial bioenergetics | Iron–sulfur cluster biogenesis | ETC dysfunction, ↓ membrane potential, ↑ ROS | Reduced ATP production | Impaired keratinocyte, fibroblast, endothelial function |
| Immune resolution | GSH-dependent macrophage polarization | Persistence of M1 phenotype, impaired M2 transition | Excess TNF-α, IL-1β, MMP-9; low IL-10, TGF-β | ECM degradation, poor angiogenesis |
| Protease balance | Redox regulation of MMP/TIMP systems | Oxidative activation of MMPs | Excess ECM breakdown | Chronic ulcer persistence |
2. Sulfur Dysregulation as a Core Pathophysiological Driver in Diabetic Wounds
| Cellular Process | Normal Role of SLC7A11 | Effect of Diabetic Suppression | Functional Outcome in Wound |
|---|---|---|---|
| Cystine uptake | Supplies cysteine for GSH synthesis | Intracellular cysteine depletion | Redox collapse, ROS accumulation |
| Antioxidant defense | Maintains glutathione-dependent detoxification | Impaired ROS neutralization | Oxidative macromolecular damage |
| Cell migration | Preserves integrin and cytoskeletal thiol integrity | Oxidative modification of adhesion proteins | Reduced keratinocyte and fibroblast motility |
| Angiogenic signaling | Supports redox balance for HIF-1α stabilization | HIF-1α degradation, ↓ VEGF expression | Poor neovascularization |
| Mitochondrial function | Provides sulfur for Fe–S cluster assembly | ETC dysfunction, ↓ ATP | Energy deficit in repair cells |
| Inflammatory regulation | Enables redox-mediated resolution signaling | NF-κB persistence, cytokine excess | Chronic inflammation |
3. N-Acetylcysteine as an Intracellular Sulfur Restorative in Diabetic Wounds
| Target Domain | Sulfur-Dependent Mechanism Restored by NAC | Downstream Biological Effect | Relevance to Healing |
|---|---|---|---|
| Redox balance | Replenishes cysteine for GSH synthesis | Decreased intracellular ROS | Protection from oxidative injury |
| Antioxidant signaling | Enables Nrf2 pathway recovery | Increased cytoprotective gene expression | Cellular stress resistance |
| Inflammatory control | Redox suppression of NF-κB | Reduced TNF-α, IL-1β, IL-6 | Transition toward reparative phase |
| Mitochondrial bioenergetics | Supports Fe–S cluster formation | Improved ATP production | Enhanced migration and proliferation |
| Growth factor signaling | Preserves receptor thiol integrity | Restored responsiveness to repair signals | Improved granulation and re-epithelialization |
4. Methylsulfonylmethane as a Structural Sulfur Donor for Extracellular Matrix Repair
| Therapeutic Agent | Primary Compartment | Main Molecular Target | Principal Biological Effect | Role in Regenerative Strategy |
|---|---|---|---|---|
| N-Acetylcysteine | Intracellular | Cysteine → Glutathione → Redox systems | Restores antioxidant defense and mitochondrial function | Reverses metabolic and redox collapse |
| Methylsulfonylmethane | Extracellular / Matrix | Sulfur for structural protein stabilization | Enhances ECM strength and integrity | Rebuilds structural scaffold for repair |
5. The Dual-Sulfur Regenerative Hypothesis
| Pathological Domain | Primary Sulfur Defect | Biological Consequence | Targeted Sulfur Donor | Expected Regenerative Effect |
|---|---|---|---|---|
| Intracellular redox collapse | Cysteine depletion, low glutathione | Oxidative stress, inflammatory persistence | N-acetylcysteine | Restored redox control and cytoprotection |
| Mitochondrial dysfunction | Impaired Fe–S cluster biogenesis | Reduced ATP, impaired cell function | N-acetylcysteine | Bioenergetic recovery |
| ECM structural failure | Defective disulfide bonding in matrix proteins | Weak scaffold, poor mechanotransduction | Methylsulfonylmethane | Matrix stabilization and strength |
| Impaired cell–matrix signaling | Oxidative damage to adhesion proteins | Reduced migration and organization | Combined NAC + MSM | Coordinated tissue regeneration |
6. Integrated Inflammatory Resolution, Mitochondrial Recovery, and Tissue Regeneration: Discussion and Therapeutic Implications
7. Conclusion
Author Contributions
Funding Information
Ethical Approval Statement
Data Availability Statement
Competing Interests
References
- Akkus, G.; Sert, M. Diabetic foot ulcers: A devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World journal of diabetes 2022, 13(12), 1106–1121. [Google Scholar] [CrossRef]
- Ramirez-Acuña, J. M.; Cardenas-Cadena, S. A.; Marquez-Salas, P. A.; Garza-Veloz, I.; Perez-Favila, A.; Cid-Baez, M. A.; Flores-Morales, V.; Martinez-Fierro, M. L. Diabetic Foot Ulcers: Current Advances in Antimicrobial Therapies and Emerging Treatments. Antibiotics (Basel, Switzerland) 2019, 8(4), 193. [Google Scholar] [CrossRef]
- Wang, R.; Gu, S.; Kim, Y. H.; Lee, A.; Lin, H.; Jiang, D. Diabetic Wound Repair: From Mechanism to Therapeutic Opportunities. MedComm 2025, 6(10), e70406. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, L.; Chen, Y.; Thomas, E. R.; Zhou, S.; Yang, Y.; Liu, K.; Wu, J.; Li, X. Mitochondrial dysfunction in diabetic ulcers: pathophysiological mechanisms and targeted therapeutic strategies. Frontiers in cell and developmental biology 2025, 13, 1625474. [Google Scholar] [CrossRef]
- Kunkemoeller, B.; Kyriakides, T. R. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition. Antioxidants & redox signaling 2017, 27(12), 823–838. [Google Scholar] [CrossRef]
- Yan, L. J. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. Journal of diabetes research 2014, 2014, 137919. [Google Scholar] [CrossRef]
- Iacobini, C.; Vitale, M.; Pesce, C.; Pugliese, G.; Menini, S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants 2021, 10(5), 727. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A. Chronic hyperglycemia and cardiovascular dysfunction: an in-depth exploration of metabolic and cellular pathways in type 2 diabetes mellitus. Cardiovasc. Diabetol. – Endocrinol. Rep. 2025, 11, 39. [Google Scholar] [CrossRef]
- Egaña-Gorroño, L.; López-Díez, R.; Yepuri, G.; Ramirez, L. S.; Reverdatto, S.; Gugger, P. F.; Shekhtman, A.; Ramasamy, R.; Schmidt, A. M. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Frontiers in cardiovascular medicine 2020, 7, 37. [Google Scholar] [CrossRef]
- Wang, L; Jiang, Y; Zhao, C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024, 33, e15065. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, B.; Du, J.; et al. Sulfide regulation and catabolism in health and disease. Sig Transduct Target Ther 2025, 10, 174. [Google Scholar] [CrossRef]
- Akl, MM; Ahmed, A. Disruption of the transsulfuration pathway as a sulfur-driven etiology of insulin resistance: proinsulin misfolding, disulfide bond deformation, and PDI dysregulation. Explor Endocr Metab Dis. 2025, 2, 101444. [Google Scholar] [CrossRef]
- Goji, T.; Takahara, K.; Negishi, M.; Katoh, H. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. The Journal of biological chemistry 2017, 292(48), 19721–19732. [Google Scholar] [CrossRef] [PubMed]
- Lewerenz, J.; Hewett, S. J.; Huang, Y.; Lambros, M.; Gout, P. W.; Kalivas, P. W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; Smith, S. B.; Ganapathy, V.; Maher, P. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxidants & redox signaling 2013, 18(5), 522–555. [Google Scholar] [CrossRef]
- Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Communications 2018, 38, 1–13 12. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, J.; Ni, Y.; Li, G.; Wang, Y.; Cao, Y.; Zhou, M.; Zhao, C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Frontiers in immunology 2024, 15, 1467531. [Google Scholar] [CrossRef]
- Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules (Basel, Switzerland) 2014, 19(12), 19376–19389. [Google Scholar] [CrossRef]
- Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules (Basel, Switzerland) 2014, 19(12), 19376–19389. [Google Scholar] [CrossRef] [PubMed]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N. T. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. International wound journal 2017, 14(1), 89–96. [Google Scholar] [CrossRef]
- Lopes, F. B.; Sarandy, M. M.; Novaes, R. D.; Valacchi, G.; Gonçalves, R. V. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants 2024, 13(7), 823. [Google Scholar] [CrossRef] [PubMed]
- Francioso, Antonio; Baseggio Conrado, Alessia; Mosca, Luciana; Fontana, Mario. Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology. Oxidative Medicine and Cellular Longevity 2020, 2020(8294158), 27 pages. [Google Scholar] [CrossRef]
- Lu, S. C. Regulation of glutathione synthesis. Molecular aspects of medicine 2009, 30(1-2), 42–59. [Google Scholar] [CrossRef]
- Yan, Y.; Teng, H.; Hang, Q.; Kondiparthi, L.; Lei, G.; Horbath, A.; Liu, X.; Mao, C.; Wu, S.; Zhuang, L.; James You, M.; Poyurovsky, M. V.; Ma, L.; Olszewski, K.; Gan, B. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nature communications 2023, 14(1), 3673. [Google Scholar] [CrossRef]
- Elajaili, H.; Lyttle, B. D.; Lewis, C. V.; Bardill, J. R.; Dee, N.; Seal, S.; Nozik, E. S.; Liechty, K. W.; Zgheib, C. Increased ROS and Persistent Pro-Inflammatory Responses in a Diabetic Wound Healing Model (db/db): Implications for Delayed Wound Healing. International journal of molecular sciences 2025, 26(10), 4884. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, L.; Chen, Y.; Thomas, E. R.; Zhou, S.; Yang, Y.; Liu, K.; Wu, J.; Li, X. Mitochondrial dysfunction in diabetic ulcers: pathophysiological mechanisms and targeted therapeutic strategies. Frontiers in cell and developmental biology 2025, 13, 1625474. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yang, Y.; Wang, X.; Chung, M.; Zhang, L.; Cai, S.; Pan, X.; Pan, Y. Targeting the AGEs-RAGE axis: pathogenic mechanisms and therapeutic interventions in diabetic wound healing. Frontiers in medicine 2025, 12, 1667620. [Google Scholar] [CrossRef]
- Guo, Y. L.; Niu, W. J.; Jiao, H. R.; Li, Y. P.; Xu, C.; Zhou, X.; Wang, J. Crosstalk between oxidative stress and inflammatory pathways: Natural therapeutic approaches for diabetic wound healing. World journal of diabetes 2025, 16(11), 111400. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, P.; Lemley, K. V.; Andrus, J. P.; De Rosa, S. C.; Holmgren, A.; Jones, D.; Jahoor, F.; Kopke, R.; Cotgreave, I.; Bottiglieri, T.; Kaplowitz, N.; Nakamura, H.; Staal, F.; Ela, S. W.; Atkuri, K. R.; Tirouvanziam, R.; Heydari, K.; Sahaf, B.; Zolopa, A.; Frye, R. E.; Herzenberg, L. A. Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. The Therapeutic Use of N-Acetylcysteine (NAC) in Medicine 2018, 349–386. [Google Scholar] [CrossRef]
- Fujii, J.; Osaki, T.; Soma, Y.; Matsuda, Y. Critical Roles of the Cysteine–Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. International Journal of Molecular Sciences 2023, 24(9), 8044. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Su, Z. Y.; Kong, A. N. The complexity of the Nrf2 pathway: beyond the antioxidant response. The Journal of nutritional biochemistry 2015, 26(12), 1401–1413. [Google Scholar] [CrossRef]
- Magesh, S.; Chen, Y.; Hu, L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Medicinal research reviews 2012, 32(4), 687–726. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kensler, T. W.; Motohashi, H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological reviews 2018, 98(3), 1169–1203. [Google Scholar] [CrossRef]
- Sun, R.; Xu, Y.; Ji, Z.; Li, X.; Tao, Z.; Luo, W.; Yao, Y.; Chen, L.; Ma, G. Update on the impact of lipid and glucose control on diabetic wound healing. Metabolism open 2025, 28, 100408. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Wang, Y.; Deng, F.; Deng, Z. Oxidative Stress: Signaling Pathways, Biological Functions, and Disease. MedComm 2025, 6(7), e70268. [Google Scholar] [CrossRef]
- Tan, S. M.; de Haan, J. B. Combating oxidative stress in diabetic complications with Nrf2 activators: how much is too much? Redox report: communications in free radical research 2014, 19(3), 107–117. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tong, Z.; Han, B.; Zhang, Z.; Xian, Z.; Yuan, Y.; Duan, X.; Han, S.; Liu, P.; Wang, Z. Synergistic Wound Healing: Unraveling the Multi-Target Effects of Traditional Chinese Medicine and Its Biomaterials on Chronic Wound Pathways. International journal of nanomedicine 2025, 20, 12889–12912. [Google Scholar] [CrossRef]
- Winter, A. D.; McCormack, G.; Page, A. P. Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Developmental biology 2007, 308(2), 449–461. [Google Scholar] [CrossRef]
- Kupsco, A.; Schlenk, D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. International review of cell and molecular biology 2015, 317, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Bachar-Wikstrom, E.; Manchanda, M.; Bansal, R.; Karlsson, M.; Kelly-Pettersson, P.; Sköldenberg, O.; Wikstrom, J. D. Endoplasmic reticulum stress in human chronic wound healing: Rescue by 4-phenylbutyrate. International wound journal 2021, 18(1), 49–61. [Google Scholar] [CrossRef]
- Urciuoli, E.; Peruzzi, B. Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. International Journal of Molecular Sciences 2020, 21(24), 9426. [Google Scholar] [CrossRef]
- Schuster, R.; Younesi, F.; Ezzo, M.; Hinz, B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harbor perspectives in biology 2023, 15(1), a041231. [Google Scholar] [CrossRef] [PubMed]
- Rustad, K. C.; Wong, V. W.; Gurtner, G. C. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation. Differentiation; research in biological diversity 2013, 86(3), 87–91. [Google Scholar] [CrossRef]
- Read, A. D.; Bentley, R. E.; Archer, S. L.; Dunham-Snary, K. J. Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox biology 2021, 47, 102164. [Google Scholar] [CrossRef]
- Stiban, J.; So, M.; Kaguni, L. S. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. Biochemistry. Biokhimiia 2016, 81(10), 1066–1080. [Google Scholar] [CrossRef]
- Read, A. D.; Bentley, R. E.; Archer, S. L.; Dunham-Snary, K. J. Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox biology 2021, 47, 102164. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Tian, J.; Yang, F.; Chen, H.; Bai, S.; Kang, J.; Pang, K.; Huang, J.; Dong, M.; Dong, S.; Tian, Z.; Fang, S.; Fan, H.; Lu, F.; Yu, B.; Li, S.; Zhang, W. Impaired Iron-Sulfur Cluster Synthesis Induces Mitochondrial PARthanatos in Diabetic Cardiomyopathy. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2025, 12(1), e2406695. [Google Scholar] [CrossRef]
- Wu, L.; Huang, F.; Sun, Z.; Zhang, J.; Xia, S.; Zhao, H.; Liu, Y.; Yang, L.; Ding, Y.; Bian, D.; Li, K.; Sun, Y. Downregulation of Iron–Sulfur Cluster Biogenesis May Contribute to Hyperglycemia-Mediated Diabetic Peripheral Neuropathy in Murine Models. Antioxidants 2024, 13(9), 1036. [Google Scholar] [CrossRef]
- Guo, S.; Dipietro, L. A. Factors affecting wound healing. Journal of dental research 2010, 89(3), 219–229. [Google Scholar] [CrossRef]
- Wang, S.; Liang, Y.; Dai, C. Metabolic Regulation of Fibroblast Activation and Proliferation during Organ Fibrosis. Kidney diseases (Basel, Switzerland) 2022, 8(2), 115–125. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D. H.; Lee, H.; Park, C.; Hong, S. H.; Hong, S. H.; Kim, G. Y.; Cha, H. J.; Kim, S.; Kim, H. S.; Hwang, H. J.; Choi, Y. H. Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity. Antioxidants (Basel, Switzerland) 2019, 8(9), 413. [Google Scholar] [CrossRef]
- Lopes, F. B.; Sarandy, M. M.; Novaes, R. D.; Valacchi, G.; Gonçalves, R. V. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel, Switzerland) 2024, 13(7), 823. [Google Scholar] [CrossRef]
- Brüne, B.; Dehne, N.; Grossmann, N.; Jung, M.; Namgaladze, D.; Schmid, T.; von Knethen, A.; Weigert, A. Redox control of inflammation in macrophages. Antioxidants & redox signaling 2013, 19(6), 595–637. [Google Scholar] [CrossRef]
- Kwon, D. H.; Lee, H.; Park, C.; Hong, S. H.; Hong, S. H.; Kim, G. Y.; Cha, H. J.; Kim, S.; Kim, H. S.; Hwang, H. J.; Choi, Y. H. Glutathione Induced Immune-Stimulatory Activity by Promoting M1-Like Macrophages Polarization via Potential ROS Scavenging Capacity. Antioxidants (Basel, Switzerland) 2019, 8(9), 413. [Google Scholar] [CrossRef]
- Sharma, S.; Kishen, A. Dysfunctional crosstalk between macrophages and fibroblasts under LPS-infected and hyperglycemic environment in diabetic wounds. Sci Rep 2025, 15, 17233. [Google Scholar] [CrossRef]
- Jindatanmanusan; Punyanuch; Luanraksa; Sivat; Boonsiri; Tanit; Nimmanon; Thirayost; Arnutti; Pasra. Wound Fluid Matrix Metalloproteinase-9 as a Potential Predictive Marker for the Poor Healing Outcome in Diabetic Foot Ulcers. Pathology Research International 2018, 2018(1631325), 5 pages. [Google Scholar] [CrossRef]
- Jones, J. I.; Nguyen, T. T.; Peng, Z.; Chang, M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel, Switzerland) 2019, 12(2), 79. [Google Scholar] [CrossRef]
- Filep, J. G. Targeting Neutrophils for Promoting the Resolution of Inflammation. Frontiers in immunology 2022, 13, 866747. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Y. Targeting persistently activated inflammatory microenvironment to promote chronic wound healing. Frontiers in immunology 2025, 16, 1708358. [Google Scholar] [CrossRef] [PubMed]
- Talbott, H. E.; Mascharak, S.; Griffin, M.; Wan, D. C.; Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell stem cell 2022, 29(8), 1161–1180. [Google Scholar] [CrossRef] [PubMed]
- Shan, X. M.; Chen, C. W.; Zou, D. W.; Gao, Y. B.; Ba, Y. Y.; He, J. X.; Zhu, Z. Y.; Liang, J. J. Suppression of ferroptosis through the SLC7A11/glutathione/glutathione peroxidase 4 axis contributes to the therapeutic action of the Tangshenning formula on diabetic renal tubular injury. Chinese medicine 2024, 19(1), 151. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Nakaki, T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules (Basel, Switzerland) 2015, 20(5), 8742–8758. [Google Scholar] [CrossRef] [PubMed]
- Schober, M.; Raghavan, S.; Nikolova, M.; Polak, L.; Pasolli, H. A.; Beggs, H. E.; Reichardt, L. F.; Fuchs, E. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. The Journal of cell biology 2007, 176(5), 667–680. [Google Scholar] [CrossRef] [PubMed]
- Boraldi, F.; Lofaro, F. D.; Bonacorsi, S.; Mazzilli, A.; Garcia-Fernandez, M.; Quaglino, D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024, 12(7), 1586. [Google Scholar] [CrossRef]
- Landén, N. X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and molecular life sciences: CMLS 2016, 73(20), 3861–3885. [Google Scholar] [CrossRef]
- Li, H. S.; Zhou, Y. N.; Li, L.; Li, S. F.; Long, D.; Chen, X. L.; Zhang, J. B.; Feng, L.; Li, Y. P. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox biology 2019, 25, 101109. [Google Scholar] [CrossRef]
- Pan, Y.; Mansfield, K. D.; Bertozzi, C. C.; Rudenko, V.; Chan, D. A.; Giaccia, A. J.; Simon, M. C. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Molecular and cellular biology 2007, 27(3), 912–925. [Google Scholar] [CrossRef]
- Heun, Y.; Pogoda, K.; Anton, M.; Pircher, J.; Pfeifer, A.; Woernle, M.; Ribeiro, A.; Kameritsch, P.; Mykhaylyk, O.; Plank, C.; Kroetz, F.; Pohl, U.; Mannell, H. HIF-1α Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2. Molecular therapy: the journal of the American Society of Gene Therapy 2017, 25(7), 1616–1627. [Google Scholar] [CrossRef]
- Ezeriņa, D.; Takano, Y.; Hanaoka, K.; Urano, Y.; Dick, T. P. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell chemical biology 2018, 25(4), 447–459.e4. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, S.; Tanaka, T.; Mano, R.; Kondo, S.; Kodama, S. SLC7A11/xCT-mediated Cystine Uptake Regulates Intracellular Glutathione and Promotes Antioxidant Defense in Lymphatic Endothelial Cells. Anticancer research 2025, 45(1), 65–71. [Google Scholar] [CrossRef]
- Tenório, M. C. D. S.; Graciliano, N. G.; Moura, F. A.; Oliveira, A. C. M.; Goulart, M. O. F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants (Basel, Switzerland) 2021, 10(6), 967. [Google Scholar] [CrossRef]
- McGinley, C.; Adeyemi, O.; Oyolola, O.; Ford, B. D.; Ford, G. D. Redox State of Glutathione and Cysteine in Plasma Following Acute Stroke. Antioxidants 2026, 15(1), 117. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules (Basel, Switzerland) 2020, 25(22), 5474. [Google Scholar] [CrossRef] [PubMed]
- Bellanti, F.; Coda, A. R. D.; Trecca, M. I.; Lo Buglio, A.; Serviddio, G.; Vendemiale, G. Redox Imbalance in Inflammation: The Interplay of Oxidative and Reductive Stress. Antioxidants (Basel, Switzerland) 2025, 14(6), 656. [Google Scholar] [CrossRef]
- Read, A. D.; Bentley, R. E.; Archer, S. L.; Dunham-Snary, K. J. Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox biology 2021, 47, 102164. [Google Scholar] [CrossRef]
- Amador-Martínez, I.; Aparicio-Trejo, O. E.; Aranda-Rivera, A. K.; Bernabe-Yepes, B.; Medina-Campos, O. N.; Tapia, E.; Cortés-González, C. C.; Silva-Palacios, A.; Roldán, F. J.; León-Contreras, J. C.; Hernández-Pando, R.; Saavedra, E.; Gonzaga-Sánchez, J. G.; Ceja-Galicia, Z. A.; Sánchez-Lozada, L. G.; Pedraza-Chaverri, J. Effect of N-Acetylcysteine in Mitochondrial Function, Redox Signaling, and Sirtuin 3 Levels in the Heart During Cardiorenal Syndrome Type 4 Development. Antioxidants (Basel, Switzerland) 2025, 14(3), 367. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Wang, Y.; Deng, F.; Deng, Z. Oxidative Stress: Signaling Pathways, Biological Functions, and Disease. MedComm 2025, 6, e70268. [Google Scholar] [CrossRef]
- Nigam, M.; Punia, B.; Dimri, D. B.; Mishra, A. P.; Radu, A.-F.; Bungau, G. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells 2025, 14(15), 1207. [Google Scholar] [CrossRef]
- Diller, R. B.; Tabor, A. J. The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics (Basel, Switzerland) 2022, 7(3), 87. [Google Scholar] [CrossRef]
- Butawan, M.; Benjamin, R. L.; Bloomer, R. J. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients 2017, 9(3), 290. [Google Scholar] [CrossRef]
- Karimi, M.; Ignasiak, M.; Chan, B.; et al. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability. Sci Rep 2016, 6, 38572. [Google Scholar] [CrossRef]
- Yamauchi, M.; Taga, Y.; Hattori, S.; Shiiba, M.; Terajima, M. Analysis of collagen and elastin cross-links. Methods in cell biology 2018, 143, 115–132. [Google Scholar] [CrossRef]
- Huang, Y.; Kyriakides, T. R. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix biology plus 2020, 6–7, 100037. [Google Scholar] [CrossRef] [PubMed]
- Tracy, L. E.; Minasian, R. A.; Caterson, E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in wound care 2016, 5(3), 119–136. [Google Scholar] [CrossRef]
- Jeong, H.-L.; Kang, E.-B.; Yun, S.-G.; Park, D.-b.; Lim, J.-O.; Suh, J.-S. Effect of a Silk Sericin and Methylsulfonylmethane (MSM) Blends on Inflammatory Response and Wound Healing. Applied Sciences 2023, 13(1), 288. [Google Scholar] [CrossRef]
- Hong, L.; Li, M.; Fan, Y. Oxidative stress and programmed cell death in diabetic wounds: A comprehensive review. Science progress 2025, 108(3), 368504251370676. [Google Scholar] [CrossRef] [PubMed]
- Baba, S. P.; Bhatnagar, A. ROLE OF THIOLS IN OXIDATIVE STRESS. Current opinion in toxicology 2018, 7, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Galán, Y. I.; Guzmán-Silahua, S.; Trujillo-Rangel, W. Á.; Rodríguez-Lara, S. Q. Role of Ischemia/Reperfusion and Oxidative Stress in Shock State. Cells 2025, 14(11), 808. [Google Scholar] [CrossRef]
- Morris, G.; Gevezova, M.; Sarafian, V.; et al. Redox regulation of the immune response. Cell Mol Immunol 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
- Braymer, J. J.; Lill, R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. The Journal of biological chemistry 2017, 292(31), 12754–12763. [Google Scholar] [CrossRef]
- DeWane, G.; Salvi, A. M.; DeMali, K. A. Fueling the cytoskeleton - links between cell metabolism and actin remodeling. Journal of cell science 2021, 134(3), jcs248385. [Google Scholar] [CrossRef]
- DeWane, G.; Salvi, A. M.; DeMali, K. A. Fueling the cytoskeleton - links between cell metabolism and actin remodeling. Journal of cell science 2021, 134(3), jcs248385. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Torres, M.; Bachar-Wikström, E.; Wikström, J. D. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Frontiers in cell and developmental biology 2023, 11, 1252318. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M. L.; Huang, H. P.; Hsu, J. D.; Lai, Y. R.; Hsiao, Y. P.; Lu, F. J.; Chang, H. R. Topical N-acetylcysteine accelerates wound healing in vitro and in vivo via the PKC/Stat3 pathway. International journal of molecular sciences 2014, 15(5), 7563–7578. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M. L.; Huang, H. P.; Hsu, J. D.; Lai, Y. R.; Hsiao, Y. P.; Lu, F. J.; Chang, H. R. Topical N-acetylcysteine accelerates wound healing in vitro and in vivo via the PKC/Stat3 pathway. International journal of molecular sciences 2014, 15(5), 7563–7578. [Google Scholar] [CrossRef]
- Butawan, M.; Benjamin, R. L.; Bloomer, R. J. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients 2017, 9(3), 290. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
