Submitted:
01 February 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Materials and Methods
3. Results
3.1. Skeletal Bone Assessment: Orthopedic Applications and Clinical Outcomes
3.1.1. Conventional Radiography and Morphometric Indices
3.1.2. The Role of DXA
3.1.3. Advanced Imaging: CT and MRI-Based Quality Scores
3.1.4. QUS
3.2. Maxillofacial Bone Assessment and Its Clinical Implications
3.2.1. Anatomical Considerations and Site-Specific Selection
3.2.2. The Digital Evolution: From 2D Imaging to Artificial Intelligence
3.2.3. The Paradigm Shift to 3D: CT and CBCT Protocols
3.2.4. The DXA Paradox in Dental Implantology
3.3. The Interplay Between Skeletal and Maxillofacial Bone Health
3.3.1. Correlations via Conventional Imaging and DXA
3.3.2. Advanced Modalities and Opportunistic Screening

4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| BMD | Bone Mineral Density |
| BQ | Bone Quality |
| DXA | Dual Energy X-Ray Absorptiometry |
| WHO | World Health Organization |
| SD | Standard Deviation |
| CBCT | Cone Beam Computed Tomography |
| HU | Hounsfield Unit |
| MRI | Magnetic Resonance Image |
| QUS | Quantitative Ultrasound |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| CEC-UV | Committee of Bioethics of Research in Human Beings of the University of Valparaíso |
| THA | Total Hip Arthroplasty |
| PAO | Periacetabular osteotomy |
| CFI | Canal Flare Index |
| CFR | Canal Fill Ratio |
| VBQ | Vertebral Bone Quality |
| EBQ | Endplate Bone Quality |
| UKR | Unicompartmental Knee Replacement |
| PROMs | Patient Reported Outcomes |
| LLIF | Lateral Lumbar Interbody Fusion |
| ACDF | Anterior Cervical Discectomy and Fusion |
| US | Ultrasound |
| 2D | Two-dimensional |
| AI | Artificial Intelligence |
| 3D | Three-dimensional |
| RFA | Resonance Frequency Analysis |
| FD | Fractal Dimensions |
| MCI | Mandibular Cortical Index |
| HR-pQCT | High Resolution Peripherical Quantitative Computed Tomography |
| QCT | Quantitative Computed Tomography |
| 3D MOI | three-dimensional mandibular osteoporosis index |
References
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research 2021, 16, 609. [Google Scholar] [CrossRef]
- Lewis, S.R.; Macey, R.; Parker, M.J.; Cook, J.A.; Griffin, X.L. Arthroplasties for hip fracture in adults. Cochrane Database of Systematic Reviews 2022, 2, CD013410. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y.; of the European Society for Clinical, S.A.B.; of Osteoporosis (ESCEO), E.A.; the Committees of Scientific Advisors.; of the International Osteoporosis Foundation (IOF), N.S. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International 2019, 30, 3–44. [CrossRef]
- Blake, G.M.; Fogelman, I. An update on dual-energy x-ray absorptiometry. Seminars in Nuclear Medicine 2010, 40, 62–73. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Compston, J. Bone quality: what is it and how is it measured? Arquivos brasileiros de endocrinologia e metabologia 2006, 50, 579–585. [Google Scholar] [CrossRef]
- Bouxsein, M.L. Bone quality: where do we go from here? Osteoporosis International 2003, 14 Suppl 5, S118–S127. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E.; Qu, Z.; Bidez, M.W. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. Journal of Oral and Maxillofacial Surgery 1999, 57, 700–708. [Google Scholar] [CrossRef]
- Alsaadi, G.; Quirynen, M.; Komárek, A.; van Steenberghe, D. Impact of local and systemic factors on the incidence of late oral implant loss. Clinical Oral Implants Research 2008, 19, 670–676. [Google Scholar] [CrossRef]
- Dervis, E. Oral implications of osteoporosis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2005, 100, 349–356. [Google Scholar] [CrossRef]
- Okada, S.; Kawano, A.; Oue, H.; Takeda, Y.; Yokoi, M.; Koretake, K.; Tsuga, K. Preoperative evaluation of bone quality for dental implantation using an ultrasound axial transmission device in an ex vivo model. Clinical and Experimental Dental Research 2017, 3, 81–86. [Google Scholar] [CrossRef]
- Lemos, C.A.A.; de Oliveira, A.S.; Faé, D.S.; Oliveira, H.F.F.E.; Del Rei Daltro Rosa, C.D.; Bento, V.A.A.; Verri, F.R.; Pellizzer, E.P. Do dental implants placed in patients with osteoporosis have higher risks of failure and marginal bone loss compared to those in healthy patients? A systematic review with meta-analysis. Clinical Oral Investigations 2023, 27, 2483–2493. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporosis International 1994, 4, 368–381. A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. [CrossRef]
- Wakimoto, M.; Matsumura, T.; Ueno, T.; Mizukawa, N.; Yanagi, Y.; Iida, S. Bone quality and quantity of the anterior maxillary trabecular bone in dental implant sites. Clinical Oral Implants Research 2012, 23, 1314–1319. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, W.; Wang, Y.; Yu, J.; Zou, D. Assessments of jaw bone density at implant sites using 3D cone-beam computed tomography. European Review for Medical and Pharmacological Sciences 2014, 18, 1398–1403. [Google Scholar]
- Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clinical Oral Implants Research 2015, 26, e1–e7. [Google Scholar] [CrossRef]
- Lekholm, U.; Zarb, G. Patient selection and preparation. In Tissue-integrated prostheses: osseointegration in clinical dentistry; P.-I. Branemark, G. A., Zarb, T.A., Eds.; Quintessence Publishing Co.: Chicago, 1985; pp. 199–209. [Google Scholar]
- Misch, C.E. Density of bone: effect on treatment plans, surgical approach, healing, and progressive bone loading. International Journal of Oral Implantology 1990, 6, 23–31. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Żarnowska, I.; Wilk, B.; Chilińska, M.; Kołodziejczyk, K.; Garlewicz, R.; Zlotorowicz, M. Bone Quality Assessment Before Total Hip Arthroplasty: The Role of Densitometry. Cureus 2024, 16, e55480. [Google Scholar] [CrossRef] [PubMed]
- Ries, C.; Boese, C.K.; Dietrich, F.; et al. Femoral stem subsidence in cementless total hip arthroplasty: a retrospective single-centre study. International Orthopaedics (SICOT) 2019, 43, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Naylor, J.M.; Adie, S.; Liu, V.K.; Harris, I.A. Preoperative Factors and Patient-Reported Outcomes After Total Hip Arthroplasty: Multivariable Prediction Modeling. The Journal of Arthroplasty 2022, 37, 714–720.e4. [Google Scholar] [CrossRef]
- Isaksen, K.F.; Roscher, E.K.; Iversen, K.S.; Eitzen, I.; Clarke-Jenssen, J.; Nordsletten, L.; Madsen, J.E. Preoperative incipient osteoarthritis predicts failure after periacetabular osteotomy: 69 hips operated through the anterior intrapelvic approach. Hip International 2019, 29, 516–526. [Google Scholar] [CrossRef]
- Ishii, Y.; Noguchi, H.; Sato, J.; Takahashi, I.; Ishii, H.; Ishii, R.; Ishii, K.; Toyabe, S.I. Preoperative bone assessment by bone mineral density and bone turnover in patients undergoing total knee arthroplasty. Journal of Orthopaedics 2021, 28, 121–125. [Google Scholar] [CrossRef]
- Dyreborg, K.; Sørensen, M.S.; Flivik, G.; Solgaard, S.; Petersen, M.M. Preoperative BMD does not influence femoral stem subsidence of uncemented THA when the femoral T-score is > -2.5. Acta Orthopaedica 2021, 92, 538–543. [Google Scholar] [CrossRef]
- Rolvien, T.; Thiessen, M.L.; Boese, C.K.; Bechler, U.; Strahl, A.; Beil, F.T.; Ries, C. Areal bone mineral density is not associated with femoral stem subsidence in patients younger than 70 years undergoing total hip arthroplasty. Archives of Orthopaedic and Trauma Surgery 2024, 144, 1415–1422. [Google Scholar] [CrossRef]
- Nazari-Farsani, S.; Vuopio, M.; Löyttyniemi, E.; Aro, H.T. Contributing factors to the initial femoral stem migration in cementless total hip arthroplasty of postmenopausal women. Journal of Biomechanics 2021, 117, 110262. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Vasavda, A.N.; Rai, A.K.; Rathod, T.N.; Kamble, P.; Keny, S. Short-Term Analysis of the Changes in the Bone Mineral Density of the Proximal Femur After Uncemented Total Hip Arthroplasty: A Prospective Study of 110 Patients. Cureus 2022, 14, e23257. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, M.A.F.; Odgaard, A.; Madsen, F.; Mosegaard, S.B.; Thomsen, J.S.; Hauge, E.M.; Søballe, K.; Stilling, M. Preoperative proximal tibial bone density, bone microarchitecture, and bone turnover are not associated with postoperative tibial component migration in cemented and cementless medial unicompartmental knee replacements: secondary analyses from a randomized controlled trial. Acta orthopaedica 2024, 95, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Sariali, E.; Gaujac, N.; Grimal, Q.; Klouche, S. Pre-operative bone mineral density is a predictive factor for excellent early patient-reported outcome measures in cementless total hip arthroplasty using a proximally fixed anatomic stem. A prospective study at two year minimum follow-up. International Orthopaedics 2020, 44, 2253–2259. [Google Scholar] [CrossRef]
- Ehresman, J.; Pennington, Z.; Schilling, A.; Lubelski, D.; Ahmed, A.K.; Cottrill, E.; Khan, M.; Sciubba, D.M. Novel MRI-based score for assessment of bone density in operative spine patients. The spine journal: official journal of the North American Spine Society 2020, 20, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gong, Z.; Zheng, C.; Chen, Y.; Ma, X.; Wang, H.; Jiang, J. Preoperative Assessment of Bone Density Using MRI-Based Vertebral Bone Quality Score Modified for Patients Undergoing Cervical Spine Surgery. In Global Spine Journal; Advance online publication, 2022. [Google Scholar] [CrossRef]
- Jones, C.; Okano, I.; Arzani, A.; Dodo, Y.; Moser, M.; Reisener, M.J.; Chiapparelli, E.; Adl Amini, D.; Shue, J.; Sama, A.A.; et al. The predictive value of a novel site-specific MRI-based bone quality assessment, endplate bone quality (EBQ), for severe cage subsidence among patients undergoing standalone lateral lumbar interbody fusion. The spine journal: official journal of the North American Spine Society 2022, 22, 1875–1883. [Google Scholar] [CrossRef]
- Ran, L.; Xie, T.; Zhao, L.; Wang, C.; Luo, C.; Wu, D.; You, X.; Huang, S.; Zeng, J. MRI-based endplate bone quality score predicts cage subsidence following oblique lumbar interbody fusion. In The spine journal: official journal of the North American Spine Society; Advance online publication, 2024. [Google Scholar] [CrossRef]
- Tuo, Y.; Lin, K.; Yang, J.; Wang, S.; Abudouaini, H. Preoperative MRI-based endplate quality: a novel tool for predicting cage subsidence after anterior cervical spine surgery. Journal of Orthopaedic Surgery and Research 2024, 19, 245. [Google Scholar] [CrossRef]
- Nazari-Farsani, S.; Vuopio, M.E.; Aro, H.T. Bone Mineral Density and Cortical-Bone Thickness of the Distal Radius Predict Femoral Stem Subsidence in Postmenopausal Women. The Journal of Arthroplasty 2020, 35, 1877–1884.e1. [Google Scholar] [CrossRef]
- Staedt, H.; Rossa, M.; Lehmann, K.M.; Al-Nawas, B.; Kämmerer, P.W.; Heimes, D. Potential risk factors for early and late dental implant failure: a retrospective clinical study on 9080 implants. International Journal of Implant Dentistry 2020, 6, 81. [Google Scholar] [CrossRef]
- Lee, J.H.; Yun, J.H.; Kim, Y.T. Deep learning to assess bone quality from panoramic radiographs: the feasibility of clinical application through comparison with an implant surgeon and cone-beam computed tomography. Journal of Periodontal & Implant Science Advance online publication. 2024. [Google Scholar] [CrossRef]
- Issa, N.S.H.; Othman, T.A.; Sleman, B.M. A comparative radiographic study of bone density changes around titanium implants in the posterior mandible, preoperative, and postoperative. Annals of Medicine and Surgery 2024, 86, 3216–3221. [Google Scholar] [CrossRef]
- Rokn, A.; Rasouli Ghahroudi, A.A.; Daneshmonfared, M.; Menasheof, R.; Shamshiri, A.R. Tactile sense of the surgeon in determining bone density when placing dental implant. Implant Dentistry 2014, 23, 697–703. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; McGlumphy, E.A. Is there a lower threshold value of bone density for early loading protocols of dental implants? Journal of Oral Rehabilitation 2008, 35, 775–781. [Google Scholar] [CrossRef]
- Takekawa, T.; Moroi, A.; Gomi, K.; Takayama, A.; Yoshizawa, K.; Ueki, K. Correlation Between Acquisition of Dental Implant Stability and Hounsfield Units at Dental Implant Placement. The Journal of oral implantology 2024, 50, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Coutant, J.C.; Seguela, V.; Hauret, L.; Caix, P.; Ella, B. Assessment of the correlation between implant stability and bone density by computed tomography and resonance frequency analysis in fresh cadavers. The International journal of oral maxillofacial implants 2014, 29, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Tammisalo, E.; Iwai, K.; Hashimoto, K.; Shinoda, K. Development of a compact computed tomographic apparatus for dental use. Dento maxillo facial radiology 1999, 28, 245–248. [Google Scholar] [CrossRef]
- Mozzo, P.; Procacci, C.; Tacconi, A.; Martini, P.T.; Andreis, I.A. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. European Radiology 1998, 8, 1558–1564. [Google Scholar] [CrossRef]
- Handelsman, M. Surgical guidelines for dental implant placement. British Dental Journal 2006, 201, 139–152. [Google Scholar] [CrossRef]
- Ye, Z.; Ye, H.; Wu, Y.; Jiang, Z.; Yao, H.; Xu, X.; Zhang, Y.; Du, W.; Li, W.; Zheng, Y.; et al. Effect of bone mass density and alveolar bone resorption on stress in implant restoration of free-end edentulous posterior mandible: Finite element analysis of double-factor sensitivity. Annals of Anatomy - Anatomischer Anzeiger 2024, 253, 152210. [Google Scholar] [CrossRef] [PubMed]
- Yuvashree, C.S.; Rajasekar, A. Prevalence and Association between Primary Stability and Bone Quality in Implants Placed in Edentulous Dental Arches: A Retrospective Analysis. Journal of Long-Term Effects of Medical Implants 2024, 34, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wakankar, J.; Mangalekar, S.B.; Kamble, P.; Gorwade, N.; Vijapure, S.; Vhanmane, P. Comparative Evaluation of the Crestal Bone Level Around Pre- and Post-loaded Immediate Endoosseous Implants Using Cone-Beam Computed Tomography: A Clinico-Radiographic Study. Cureus 2023, 15, e34674. [Google Scholar] [CrossRef]
- Holahan, C.M.; Wiens, J.L.; Weaver, A.; Assad, D.; Koka, S. Relationship between systemic bone mineral density and local bone quality as effectors of dental implant survival. Clinical Implant Dentistry and Related Research 2011, 13, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Holahan, C.M.; Koka, S.; Kennel, K.A.; Weaver, A.L.; Assad, D.A.; Regennitter, F.J.; Kademani, D. Effect of osteoporotic status on the survival of titanium dental implants. The International Journal of Oral Maxillofacial Implants 2008, 23, 905–910. [Google Scholar]
- Noble, P.C.; Alexander, J.W.; Lindahl, L.J.; Yew, D.T.; Granberry, W.M.; Tullos, H.S. The anatomic basis of femoral component design. Clinical Orthopaedics and Related Research 1988, 148–165. [Google Scholar] [CrossRef]
- Aggarwal, D.A.; Goyal, D.R.; Gupta, D.J.; Khwaja, D.K.J. Comparative Analysis of Mandibular Cortical Index in Orthopantomogram and Bone Mineral Density in Dual Energy X-Ray Absorptiometry in Postmenopausal Females – A Radiological Study in North Indian Population; 2015. [Google Scholar]
- Esfahanizadeh, N.; Davaie, S.; Rokn, A.R.; Daneshparvar, H.R.; Bayat, N.; Khondi, N.; Ajvadi, S.; Ghandi, M. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry. Dental Research Journal 2013, 10, 460–466. [Google Scholar]
- Miliuniene, E.; Alekna, V.; Peciuliene, V.; Tamulaitiene, M.; Maneliene, R. Relationship between mandibular cortical bone height and bone mineral density of lumbar spine. Stomatologija 2008, 10, 72–75. [Google Scholar] [PubMed]
- Gulsahi, A.; Paksoy, C.S.; Ozden, S.; Kucuk, N.O.; Cebeci, A.R.I.; Genc, Y. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices. Dentomaxillofacial Radiology 2010, 39, 284–289. [Google Scholar] [CrossRef]
- Güngör, E.; Yildirim, D.; Çevik, R. Evaluation of osteoporosis in jaw bones using cone beam CT and dual-energy X-ray absorptiometry. Journal of Oral Science 2016, 58, 185–194. [Google Scholar] [CrossRef]
- Shokri, A.; Ghanbari, M.; Hafez Maleki, F.; Ramezani, L.; Amini, P.; Tapak, L. Relationship of gray values in cone beam computed tomography and bone mineral density obtained by dual energy X-ray absorptiometry. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2019. [Google Scholar] [CrossRef]
- Mostafa, R.A.; Arnout, E.A.; Abo El-Fotouh, M.M. Feasibility of cone beam computed tomography radiomorphometric analysis and fractal dimension in assessment of postmenopausal osteoporosis in correlation with dual X-ray absorptiometry. Dento maxillo facial radiology 2016, 45, 20160212. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.J.; Kim, K.A. Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women. Imaging Science in Dentistry 2011, 41, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Brasileiro, C.B.; Chalub, L.L.F.H.; Abreu, M.H.N.G.; Barreiros, I.D.; Amaral, T.M.P.; Kakehasi, A.M.; Mesquita, R.A. Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis. Archives of Osteoporosis 2017, 12, 26. [Google Scholar] [CrossRef]
- Barngkgei, I.; Al Haffar, I.; Shaarani, E.; Khattab, R.; Mashlah, A. Assessment of jawbone trabecular bone structure amongst osteoporotic women by cone-beam computed tomography: the OSTEOSYR project. Journal of Investigative and Clinical Dentistry 2016, 7, 332–340. [Google Scholar] [CrossRef]
- Horner, K.; Devlin, H.; Alsop, C.W.; Hodgkinson, I.M.; Adams, J.E. Mandibular bone mineral density as a predictor of skeletal osteoporosis. The British Journal of Radiology 1996, 69, 1019–1025. [Google Scholar] [CrossRef]
- Drage, N.A.; Palmer, R.M.; Blake, G.; Wilson, R.; Crane, F.; Fogelman, I. A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects. Clinical Oral Implants Research 2007, 18, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Lindh, C.; Obrant, K.; Petersson, A. Maxillary bone mineral density and its relationship to the bone mineral density of the lumbar spine and hip. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2004, 98, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Grisa, A.; Veitz-Keenan, A. Is osteoporosis a risk factor for implant survival or failure? Evidence-Based Dentistry 2018, 19, 51–52. [Google Scholar] [CrossRef]
- Becker, W.; Becker, B.E.; Alsuwyed, A.; Al-Mubarak, S. Long-term evaluation of 282 implants in maxillary and mandibular molar positions: a prospective study. Journal of periodontology 1999, 70, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.; Bento, V.; Duarte, N.; Sayeg, J.; Santos, T.; Pellizzer, E. Do dental implants installed in different types of bone (I, II, III, IV) have different success rates? A systematic review and meta-analysis. The Saudi Dental Journal 2024, 36, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Hsu, J.T.; Fuh, L.J.; Peng, S.L.; Huang, H.L.; Tsai, M.T. New classification for bone type at dental implant sites: a dental computed tomography study. BMC Oral Health 2023, 23, 324. [Google Scholar] [CrossRef]
- Pisulkar, S.G.; Mistry, R.A.; Nimonkar, S.; Dahihandekar, C.; Pisulkar, G.; Belkhode, V. The Correlation of Mineral Density of Jaws With Skeletal Bone and Its Effect on Implant Stability in Osteoporotic Patients: A Review of Patient-Based Studies. Cureus 2022, 14, e27481. [Google Scholar] [CrossRef]
- Castro, J.G.K.d.; Carvalho, B.F.; Melo, N.S.d.; Figueiredo, P.T.d.S.; Moreira-Mesquita, C.R.; Vasconcelos, K.d.F.; Jacobs, R.; Leite, A.F. A new cone-beam computed tomography-driven index for osteoporosis prediction. Clinical Oral Investigations 2020, 24, 3193–3202. [Google Scholar] [CrossRef]
- Selvakumar, R.; Chandran, A.; Patil, A.; Harini, T.C.; Dandekeri, S.; Verma, D.; Babu J, S.; Swarnalatha, C.; Nayyar, A.S. Osteoporosis risk group: Screening for osteoporosis in dental clinics using panoramic radiographs. Journal of Education and Health Promotion 2022, 11. [Google Scholar] [CrossRef]
- Whittier, D.E.; Burt, L.A.; Boyd, S.K. A new approach for quantifying localized bone loss by measuring void spaces. Bone 2021, 143, 115785. [Google Scholar] [CrossRef]
- Samelson, E.J.; Broe, K.E.; Xu, H.; Yang, L.; Boyd, S.; Biver, E.; Szulc, P.; Adachi, J.; Amin, S.; Atkinson, E.; et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. The Lancet. Diabetes & Endocrinology 2019, 7, 34–43. [Google Scholar] [CrossRef]
- Löffler, M.T.; Jacob, A.; Valentinitsch, A.; Rienmüller, A.; Zimmer, C.; Ryang, Y.M.; Baum, T.; Kirschke, J.S. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. European radiology 2019, 29, 4980–4989. [Google Scholar] [CrossRef] [PubMed]
- Minonzio, J.G.; Ramiandrisoa, D.; Fernandez, S.; Chappard, C.; Cohen-Solal, M. Cortical bone parameters measured at the one-third distal radius obtained with axial transmission and HR-pQCT compared with anthropometric data in a representative population. Ultrasonics 2026, 159, 107829. [Google Scholar] [CrossRef] [PubMed]
| Lekholm & Zarb (1985) - CBCT | Misch (1990) – CT | WHO (1994) - DXA |
|---|---|---|
| Type I: dense cortical bone | D1: ≥ 1250 HU | High BMD: T-score |
| Type II: dense cortical and trabecular bone | D2: 850–1250 HU | Normal: T-score |
| Type III: dense trabecular bone with a thin cortical layer | D3: 350–850 HU | Osteopenia: T-score |
| Type IV: sparse trabecular bone with a thin cortical layer | D4: 150–350 HU | Osteoporosis: T-score |
| – | D5: ≤ 150 HU | – |
| Author (Year) | Site | Parameters | Key Clinical Findings |
|---|---|---|---|
| Skeletal Applications (Orthopedics & Spine) | |||
| 2D Radiographs | |||
| Żarnowska (2024) [23] | Hip | CI, CC ratio | Indices correlate with femoral neck diameter and cortical thickness. |
| Noble (1988) [55] | Hip | Canal Flare Index | CFI decreases with age; requires specific proximally wider stems. |
| Aggarwal (2022) [56] | Hip | KL Grade (OA) | Lower radiographic OA severity predicts worse post-THA outcomes. |
| Isaksen (2019) [26] | Hip (PAO) | Tönnis Classif. | Incipient OA is the main predictor for poor joint survival after PAO. |
| Ries (2019) [24] | Hip | CFI, CFR | Collarless stems show higher subsidence; morphometry is not primary risk. |
| DXA | |||
| Dyreborg (2021) [28] | Hip | T-score () | Pre-op BMD does not predict migration in patients ≤ 75y. |
| Rolvien (2024) [29] | Hip | aBMD by DXA | No significant association between BMD and subsidence in young patients. |
| Mohanty (2022) [31] | Hip | Periprosthet. BMD | Low pre-op BMD increases post-op loss in Gruen zone 7. |
| Ishii (2021) [27] | Knee | T-score, Turnover | High occult osteoporosis in TKA; screening is mandatory. |
| QCT | |||
| Sariali (2020) [33] | Hip | CT-derived BMD | Cancellous BMD predicts early PROMs in cementless THA. |
| MRI | |||
| Ehresman (2020) [34] | Spine | VBQ (MRI) | Novel score differentiates bone quality; correlates with T-score. |
| Ran (2024) [37] | Spine | EBQ (MRI) | High EBQ scores indicate increased risk of cage subsidence post-OLIF. |
| QUS | |||
| Nazari-Farsani (2020) [39] | Hip/Radius | Cortical thickness | QUS of distal radius predicts femoral stem subsidence risk. |
| Maxillofacial Applications (Dentistry) | |||
| 2D Radiographs | |||
| Lee (2024) [41] | Maxilla/Mand. | AI / Panoramic | DL matches CBCT accuracy for bone quality categorization. |
| Issa (2024) [42] | Mandible | 2D Density | Normal healing shows density drop at 1mo, then steady increase. |
| CT | |||
| Takekawa (2024) [45] | Maxilla/Mand. | HU at site | CT-HU values correlate with RFA stability and healing. |
| Rokn (2014) [43] | Maxilla/Mand. | HU vs. Tactile | Strong correlation (0.61) between HU and surgeon’s tactile sense. |
| Turkyilmaz (2008) [44] | Maxilla/Mand. | HU threshold | Threshold of HU proposed for safe early loading. |
| CBCT | |||
| Yuvashree (2024) [51] | Maxilla/Mand. | CBCT / Stability | D2 density significantly associated with stability of 30–40 Ncm. |
| Wakankar (2023) [52] | Maxilla/Mand. | Crestal bone | CBCT is superior to 2D RX for monitoring immediate implant healing. |
| DXA | |||
| Holahan (2008) [54] | Maxilla/Mand. | DXA T-score | Osteoporosis/osteopenia is not a contraindication for implants. |
| Author (Year) | Comparison | Parameters | Key Correlation Findings |
|---|---|---|---|
| Horner (1996) [66] | Mandible vs. Spine/Femur | DXA (Mandible, Spine, Femur) | Mandible body BMD is an appropriate predictor of general bone mass. |
| Drage (2007) [67] | Jaws vs. Spine/Hip | DXA (L-spine, Hip, Jaws) | Hip/Spine BMD cannot predict maxillary density; good correlation with ramus. |
| Esfahanizadeh (2013) [57] | Jaws vs. Spine/Femur | DXA T-scores | Significant correlation between skeletal and jaw bone densities. |
| Lindh (2004) [68] | Maxilla vs. Spine/Hip | DXA (Skeletal), CT HU (Maxilla) | Anterior maxilla BMD significantly correlates with lumbar spine BMD. |
| Gulsahi (2010) [59] | Jaws vs. Femur | DXA (Femur, Jaws), Pan. indices | No significant correlation found between jaw BMD and femoral BMD or indices. |
| Miliuniene (2008) [58] | Mandible vs. Spine | DXA (L2-L4), Pan. indices (CI, GI) | Mandibular cortical height correlates with lumbar BMD; predictive of osteoporosis. |
| Aggarwal (2015) [56] | Mandible vs. Spine | Pan. MCI, DXA BMD (Lumbar) | Significant MCI-lumbar BMD correlation; panoramic RX is a viable screening tool. |
| Shokri (2019) [61] | Jaws vs. Neck/Spine | CBCT Gray Values, DXA BMD | Maxilla Gray Values correlate with BMD; GV < 298 screens for osteoporosis. |
| Gungor (2016) [60] | Jaws vs. Neck/Spine | CBCT indices (CTMI, CTI), DXA | Spine BMD correlates with mandibular CT and histogram analysis values. |
| Mostafa (2016) [62] | Mandible vs. Spine | CBCT indices (CTMI, CTI, FD), DXA | CBCT radiomorphometric indices serve as useful adjuvant screening tools. |
| Brasileiro (2017) [64] | Mandible vs. Neck/Spine | CBCT indices (CTMI, CTI), DXA | Quantitative CBCT indices identify postmenopausal women with low BMD. |
| Koh (2011) [63] | Mandible vs. Neck/Spine | CBCT indices (CTI, CTCI), DXA | CBCT indices (CTI, CTCI) differentiate normal vs. osteoporotic women. |
| Barngkgei (2016) [65] | Mandible vs. Neck/Spine | CBCT histomorpho., DXA | Specific trabecular analysis via CBCT may aid in opportunistic screening. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
